8621033

Cammarata, Stephanie Jo

AN OBJECT-ORIENTED DATA MODEL FOR MANAGING COMPUTER-AIDED
DESIGN AND COMPUTER-AIDED MANUFACTURING DATA BASES

University of California, Los Angeies PH.D. 1986

University
Microfilms
International on. zeeb Rosd, ann Arsor, Mi 48108

Copyright 1986
by
Cammarata, Stephanie Jo
All Rights Reserved

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems ancountered with this document have been identified here with a check mark v .

-

©® ® N o o0 A O DN

-—h
o

-k
-h

12.
13.
14.
15.

16.

Glossy photographs or pages

Colored illustrations, paper or print

Photographs with dark background ___

lllustrations are poorcopy

Pages with black marks, not original copy

Print shows through as there is text on both sides of page
Indistinct, broken or small print on several pages L_
Print exceeds margin requirements ___

Tightly bound copy with printlost in spine

Computer printout pages with indistinct print

Page(s) lacking when material received, and not available from school or
author.

Page(s) seem to be missing in numbering only as text foliows.

Two pages numbered . Text follows.

Curling and wrinkled pages
Dissertation contains pages with print at a slant, filmed as received

Other

University
Microfilms
International

UNIVERSITY OF CALIFORNIA
Los Angeles

An Object-Oriented Data Model for Managing
Computer-Aided Design and Computer-Aided

Manufacturing Data Bases

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in Computer Science

Stephanie Jo Cammarata

1986

© Copyright by
Stephanie Jo Cammarata

1986

The dissertation of Stephanie Jo Cammarata is approved.

Ui € copdppion

Alfonso F. Cardenas

PO -

D. Stott Parker

%4%«4

Clay R. Sprowls

0 W30 8al A O\ 00l

Michel A. Melkanoff, Committee Chair

University of California, Los Angeles
1986

TABLE OF CONTENTS

Page

1 INTRODUCTIONcoiiiiniiiiiiireietnasianiescrsssserisesrsassnserssnes 1
1.1 History of CAD/CAM and CAD/CAMDBMS 1

1.2 Scope of this research...........ccoeiiieviriiecnivirreicrrnnrneeeeses 4
2MOTIVATION AND GOALScccovitiiimiininiiiiiiicieenannncenens 7
2.1 Evolution of CAD/CAMDBMScccoiiiiiiiiiiiiiinicenees 7
2.1.1 CAD drafting SyStemMScovvieiierernrrieirenesrenrencerees 8

2.1.2 Geometric modeling SystemsSccooviiiiiieenicncncnnsns 9

2.1.3 Integrated CAD/CAMDBMScciiiiiiiiniiiicenens 12

2.2 Goals of integrated CAD/CAMDBMSccoviniviiniienens 13
2.2.1 Conceptual centralizationccevvuiiniirinnaininninnsns 14

2.2.2 Part-oriented BOM hierarchies............coivinveiiciinnns 20

2.2.3 Customized representations of assemblies and parts 26

2.2.4 Incorporation of domain knowledge...........occvenenniinnns 31

3 FUNCTIONAL SPECIFICATIONScoiiiiiiiiiiiiiiiiecnrorianenes 35
3.1 Object-oriented semantic modeling facilities.........ccocevnvunnnnnes 35

3.2 Dynamic schema capabilitiescveiieinnincrnnnnnn, . 46

3.3 Semantic constraint MaiNtENANCEccovnvivierenernnneeernarenes 51

3.4 Heterogeneous data tyPesovveicruiieineiinrenraccsenanasensnns 56

4 OBJECT-ORIENTED MODELScceiiiiiiiinniiiiiiiiiininniniees 61
4.1 Object-oriented programming languagescoeevveneninnens 61

4.2 Entity-based data managementc.cocvrvveiiiiiiieneiiininiens 63

4.3 Schema-based knowledge representationocovveeneiiiiininns 65
4.3.1 Semantic NEtWOrKScevuvviiiniiiiiiiiiiiiiiiei 67

4.3.2 Frame representationsc..cocceevnnrniiiiiineeniiiiinnn, 69

4.3.3 Object-oriented knowledge representation 70

4.4 Deficiencies of object-oriented models..........cccoviviinniniiininn. 73

5 ODM: AN EXTENDED OBJECT-ORIENTED DATA MODEL........ 78
5.10DMEOAIS ...uiuiiiiiiniriiiinieririiiir e e 78
5.20DMAefinitionccviiiinrinieiiiiiiiiii et bae e 81
5.2.1 Concept representationcoecvvemreniuimeienineniaisrnes 82

5.2, 1.1 INtENSIONS +..vvvueirnrecinriieeinerararinsnenanraeeinees 86

5.2, 1.2 INStANCES. . cevuvveiininererieesnecnnrnirneneasnrnenanres 88

5.2. 1.4 EXtensions....cocorveerrieiiiiiieriiiiiniinniiiiiaens 89

5.2.2 Concept relationshipsc.ovivviernecnniiniencicniniinnens 90

5.2.2.1 Inter-concept relationships.........c.covevviinininnenns 90

5.2.2.2 Generalizationccoueinveneiiininiiierinisniiinnns 91

5.2.2.3 AgEregation.....c.civviiiiiieniiiiiiiiiiiiicaiiiiiain, 96

5.2.3 Concept INferencesoeuvviiiiiiiniiiiiiiiiiiaennciniens 101

6 ODM PROTOTYPE ...cocviviinniiiiiiiiiiiiiiinincni e raees 110
6.1 Modeling facilitiescocvveniinereeiinrrneceeirereennrinerarenes 111
6.1.1 Generalization and aggregationccceevenniincinnines 112

iii

6.1.2 PrOPeItICS «.ouivieinrenirereinrereeeranrnresnnsenarasansncnenans 119

6.1.3 Relations........ooeviiiiiiiiiiiiic i e e 122

6.1.4 Complex and heterogenecous data typesccevuven.s 123

6.2 Data manipulationooeeiiiiiiiiiennininiiriiiiieiine s 128

6.3 Semantic constraint managementccveveerniniiieearaenns 145

6.4 Dynamic schema facilitiesc.cvvvveiiirrivnineiierirnerieenns 152

6.5 ODM prototype implementationccvvveeeeeeinnineienneseennns 158

7REVIEW OF CAD/CAMDBMS PROJECTScccovvininiiiiiinnnnn. 161

7.1 Corporate CAD/CAM DBMS projectsc.ccovennveriuneicennnns 161

7.2 CAD/CAM DBMS research efforts.........c.ocovneeneniniiiiienannn. 163

8 EVALUATION AND VALIDATIONcoooiiiiiiiirnieiniiiiiinaan, 172

8.1 Hughes PWA applicationc.cccveivivmviinnininieiiinnean, 173

8.1.1 PWA data bases and file systemsc.coeeveeinanenen. 173

8.1.2 PWA conversion to ODM........cccccveviniiiinnnenninrennnnn. 174

8.1.2.1 Conceptually centralized PWA files 180

8.1.2.2 Component-oriented BOM hierarchies 188

8.1.2.3 Customized components and assemblies 198

8.2 Hughes PFSYStemMuuiiiiiiiiir i iriaeennaeeirnsesnonanes 205

8.2.1 Expressing standards as constraintsc.coeeevninnns 205

8.2.2 PF knowledge in ODM networkscccevvvverenienrnienns 208

8.3 ODM validationccovviiiiiiiieniinnenrereiiesisnanrecnianensenns 219

G CONCLUSIONS. ...ciiiiiiiiireiiiisie et tsnrisaeerttrescsnssssineesenenes 222

9.1 Factors necessitating improved CAD/CAM data management ... 222

9.2 ContributionSccoiivineiinreiiiiiitiinierinernirnes s asss 223

9.3 Limitations and future Workcceeeveeirrrereinciianiiicinransn. 226

RefErences ...couvviiiiiiiiiiiiiiiiciii e e e 229

Appendix A ABBREVIATIONS AND ACRONYMScoiiiiiinnnnnn. 237

Appendix BOML SYNTAXcoiiiiiiiiiiiiiiiiiiiinenirennenesiaesacsns 239

Appendix C QUTPUT OF OEL PARSINGcccccvtieiiiiiiiiniinenanns 244

Appendix D BILL OF MATERIALS DATA FOR PWA M87706172..... 246

Appendix E COMPONENT PHYSICAL DATA FOR PWA

MBT7T06172 . ..oriiriiiitiiiiieietaiiiiiiiitesteaseiiritetrraatieseeesacsas 250
Appendix F COMPONENT ELECTRICAL DATA FOR PWA

MBTT061T2 ... riiiiiiiiiricrcie e e s s s 254

Appendix G TEST INFORMATION FOR PWA M87706172 258

Appendix H REFERENCE INFORMATION FOR PWA M87706172.... 262

Appendix I ENGINEERING NOTES FOR PWA M87706172 264

iv

Appendix J IGES BOARD OUTLINE FOR PWA M87706172 266

Appendix K IGES TOP VIEW OF PWA M87706172ccocuueenen. 269
Appendix L MCL COMPONENT DETALLScocuveerieenereenennns 273
Appendix M MCL COMPONENT PART DESCRIPTIONS................. 276
Appendix N MCL PAD PATTERN DATAcovoeeeereneieneeeennenns 279
Appendix O MCL CASE STYLEDATAcoeeevivireeeeneeeeeneeeennenne 282
Appendix P OEL SPECIFICATION OF PFDATAcccoocceruueeeannn.. 285

LIST OF FIGURES

Page
Figure 2.1 B-rep model for a rectangular pyramidcccovniiininnnnn, 10
ST A 6L € 1+ | SO PP 11
Figure 2.3 Dataflowat Lockheed........cooviiiiiiiiiiniiiriiinncenareenannn. 16
Figure 2.4 ILockheed sample QuUeriesccviveiiiiivieniiniiniiiecnennnn, 22
Figure 2.5 Lockheed BOM schema.......c.cccvvvveeivniiiiiciiiniainncnnnn., 23
Figure 2.6 Boundary representation modelccooviiiiiiiiiniinnnnnen. 24
Figure 2.7 Rotational partc...ceoeiviiiiniiiiiiiiriiiiniisiniiciiiinineess 28
Figure 2.8 Sheet metal PATtciciiiiiiiuiiiiiniiestirieessncisesssinsnans 29
Figure 2.9 APPAS interactive SesSion..........ccoevveniiiiiiiiniiiinninininans 34
Figure 3.1 Engineering drawing of a gasket............cccoovviiiinnninnnae. 37
Figure 3.2 BOM data for an automobilec.coceviiiiinnriiniinninn., 41
Figure 3.3 BOM schema for CODASYL network model 41
Figure 3.4 BOM data in CODASYL network modelccceeennnees 42
Figure 3.5 BOM schema for hierarchical model..........c..cociviviiiiinnan, 43
Figure 3.6 BOM data in hierarchical modelc.oil, 44
Figure 3.7 BOM schema and data in relational model....................... 45
Figure 3.8 Part-oriented BOM hierarchycoocviviiiiiiiiniciniinnn, 47
Figure 3.9 Distribution of data management tasksoceenennnee. 50
Figure 4.1 Semantic network representing a taxonomy............cooeuenne. 68
Figure 4.2 Semantic network representing an assertion 69
Figure 4.3 A frame representing a stereotypical living room 70
Figure 5.1 ODM primitives representing two €atS..........occerererniannenes 87
Figure 5.2 ODM primitives with inter-concept links..............cooeeenens 92

vi

Figure 5.3 ODM primitives with intra-concept links.........c.cocveenrnnens 95

Figure 5.4 ODM BOM hierarchycocoovvuiimiiiiiiniiiiininne.. 98
Figure 5.5 Generalization and aggregation links in ODM................... 102
Figure 5.6 ODM inferencesocvvveierienuiiieeccnsiniisicnsnerenerens 104
Figure 5.7 Integration of aggregation and generalization 106
Figure 5.8 Inference derived from theorem (11).......cccivvinniiinnnn.. 107
Figure 5.9 Inference derived from theorem (12)...cccvviieninnnniiiiininenns 108
Figure 6.1 ODMnetworkcooiiiiiiiiniiiiiiiiinieniinin e cernreneaens 113
Figure 6.2 ODM BOM hierarchy with subpart quantities 115
Figure 6.3 BOM instance hierarchyc..ccovvivniviivinininneiciinnne, 117
Figure 6.4 ODM generalization networkcccceveviiivveieeniniinneee. 118
Figure 6.5 B-rep schema for solid volume...........c..ccoiiiiiiiininnnnnnnnes 124
Figure 6.6 ODM network of B-repmodelcocoevvvinvniniiniinnnnn. 125
Figure 6.7 POINT intension with 3 propertiesccocvievneiiiniinnes 126
Figure 6.8 POINT intension with one propertyc.cocveviivevriiinnen. 126
Figure 6.9 LINE-SEGMENT intensioncccvcvivevnnnuieneorenansoreinnans 128
Figure 6.10 Complex heterogeneous intensionscccoevvvveniienen, 129
Figure 6.11 ODM network of intensions and instances 132
Figure 6.12 OEL specification of ODM networkc..coevvieiiiiienens 133
Figure 6.13 OEL data fyPes.......ccccveviviiirinrreniniieiieiiiniisssionisennes 134
Figure 6.14 ODM parent and child instancesccc.oevviinviiiininnenes 147
Figure 6.15 M:N relations in the relational model..............c.ceveineenie 148
Figure 6.16 M:N relations inODMcccoviiiiiiiiiiiiiiie i 149
Figure 6.17 Generalization network supporting dynamic schemata 156
Figure 6.18 ODM software architecturecocveveiiiimeereriaicinnns 159
Figure 7.1 Summary of CAD/CAM DBMS projectsc..coceviiiinnne. 171

vii

Figure 8.1 PWAMSBT7T06172 ..o 175

Figure 8.2 PWA file organizationccccceviieiniiiiiniiciineninininncen, 177
Figure 8.3 Oracle MCL schemata..........cc.covcviiiiniiianinniininnaninnen, 178
Figure 8.4 Intensions representing MCL schemata...............ccoeeeunens 179
Figure 8.5 PWA directory hierarchyccocoouiiiiiiiiiniiiiinnnn, 183
Figure 8.6 Intensions representing PWA directoryccooeviveineannnnnn 184
Figure 8.7 PWA directory inStances..........ocoeeeeerrvrnnnenrinncacaneninnn, 185
Figure 8.8 IGES Intensionscccocvviiviiiniincniiisiieinieniinerenan, 186
Figure 8.9 IGES inStANCEScouviiiinieroniiiereiinarracrnrasassersieneaeess 187
Figure 8.10 PWA conceptual schemaccooeveiiiiiiiiiiiiininen... 189
Figure 8.11 PWA component intensions..........coceuiuiiriiiiiininennennnn. 191
Figure 8.12 Replication in PWA datacoocvviniivniiniiinii 193
Figure 8.13 PWA component inStancescoceevvnvieierininrnnninenseeass 195
Figure 8.14 OEL specification of PWA instancesc..ccoeennenne. 196
Figure 8.15 New PWA InStances.........ccceevviiiiiininininineniiirenneens 201
Figure 8.16 Hierarchical constraints inODM.............c.ciiiiiiiiinnne. 204
Figure 8.17 PFsample partccc.ccovvvriiiniiiniiiiininiiiiennenne, 206
Figure 8.18 ODM representation of machined partcovvenneene. 209
viii

ACKNOWLEDGEMENTS

I always claimed that I would keep my acknowledgements short and
brief, but as I near completion, I realize just how many individuals contributed

in a significant way to this doctoral dissertation.

First of all, I want to thank the members of my committee for their help-
ful comments and suggestions. In particular, I am most grateful to my advisor,
Professor Michel Melkanoff, for his excellent guidance, encouragement, and
technical expertise. His unending enthusiasm and interest in this work were vital
at times when my motivation started waning. Rosetta Lindsey and Verra Mor-
gan deserve much credit for easing the burden of UCLA’s administrative de-

tails.

This work would not have been possible without the assistance of
CAD/CAM and data management personnel at Lockheed, Rockwell, and
Hughes. Observing CAD/CAM data management in practice was invaluable for

the success of this project.

Many thanks to people at The Rand Corporation for providing a working
environment which promotes professional development. Special appreciation
goes to three of my Rand managers: Randy Steeb, Phil Klahr, and Lou Miller. In
addition, I wish to acknowledge the excellent support offered by Rand’s Infor-

mation Sciences Laboratory, in particular, the services of Jim Guyton, Terry

ix

West, and Colleen Collins.

A few very special people helped me keep this work in perspective and
supplied some much appreciated recreation. Sincere thanks to this "group of

seven” who have seen me through both elated and frustrated times.

My parents are very precious people who deserve more gratitude than I
could ever repay. They were an unlimited source of encouragement over the

years.

Finally, I could never express all the ways in which one individual, Dave
McArthur, contributed to this effort. He devoted much time, energy, patience,
and understanding to this cause. His soothing words in times of need will never

be forgotten.

VITA

Born, Batavia, New York

1974 B.A., New York State University
College at Geneseo

1974-1976 Programmer Analyst, Community Bank,
Montebello, CA

1976-1978 Research Fellowship, University of Pennsylvania

1978 M.S.E., University of Pennsylvania

1978-1986 Computer Scientist, The Rand Corporation,
Santa Monica, CA

1984-1985 Lockheed Corporation Fellowship

PUBLICATIONS

Hayes-Roth, B.,Hayes-Roth, F., Rosenschein, S.,, Cammarata, S., "Modeling
planning as an incremental opportunistic process”, Proceedings of the
Sixth International Joint Conference on Artificial Intelligence, Tokyo
(August 1979).

Thorndyke, P., McArthur, D., Cammarata, S., "AUTOPILOT: A distributed
planner for air fleet control”, Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, Vancouver (August 1981).

Cammarata, S. "Deferring updates in a relational data base system", Proceed-
ings of the Seventh International Conference on Very Large Data Bases,
Cannes, France (September 1981).

McArthur, D., Thorndyke, P., Cammarata, S., "A framework for distributed

problem solving", Proceedings of the Third Annual National Conference
on Artificial Intelligence, Pittsburg (August 1982).

xi

Cammarata, S., McArthur, D., Steeb, R., "Strategies of cooperation in distribut-
ed problem solving", Proceedings of the Eighth International Joint

Conference on Artificial Intelligence, Karlsruhe, Germany, (August
1983).

Cammarata, S., and Mclkanoff, M., "An Interactive Data Dictionary Facility for
CAD/CAM Data Bases", Expert Database Systems,
Bcgnsjgmin/Cununings Publishing Company, Inc.,, Menlo Park, CA
(1986).

Zaniolo, C., Ait-Kaci, H., Beech, D., Cammarata, S., Kerschberg, L., "Object-
oriented database systems and knowledge systems”, Expert Database
Systems, Benjamin/Cummings Publishing Company, Inc., Menlo Park,
CA (1986).

xii

ABSTRACT OF THE DISSERTATION

An Object-Oriented Data Model for Managing
Computer-Aided Design and Computer-Aided

Manufacturing Data Bases
by

Stephanie Jo Cammarata
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1986
Professor Michel A. Melkanoff, Chair

As a result of strong and steady CAD/CAM (Computer-Aided
Design/Computer-Aided Manufacturing) growth over the past 20 years, special
facilities for managing design and manufacturing data have been required.
CAD/CAM Data Base Management Systems (DBMS) fill this role. The most
widely used CAD/CAM DBMS manage data for only a single CAD or CAM ap-
plication and cannot integrate graphical, geometrical, manufacturing, and ad-
ministrative data. Furthermore, current modeling facilities are inadequate for
representing semantic features and constraints captured by an engineering draw-
ing. These limitations cause data flow gaps, inconsistent and redundant data,

and unnatural data organization in existing CAD/CAM data bases.

The purpose of this dissertation is to develop sophisticated facilities for
managing CAD/CAM data bases. This work focuses on mechanical design, en-

gineering, and manufacturing, specifically product definition data generated

xiii

during initial design phases. Based on a detailed analysis of CAD/CAM data
management requirements, and interaction with data management and manufac-
turing personnel] at Lockheed Corporation and Rockwell International, I propose
the following goals for integrated CAD/CAM DBMS:

e conceptual centralization

® part-oriented BOM hierarchies

* customized representation of assemblies and parts

* incorporation of domain knowledge

The product of this research is the theoretical design of an object-
oriented data model, ODM, and the implementation of an ODM computer
software prototype supporting CAD/CAM DBMS goals. The ODM software
system is written in T, a lexically scoped dialect of Lisp, and currently runs on
Vax and Apollo networks in UCLA’s Computer Science Department. The ODM
system provides the following unique features:

* object-oriented semantic modeling facilities
¢ dynamic schema capabilities
* semantic constraint maintenance

® heterogeneous data types

[conclude with an evaluation of ODM toward achieving the goals of in-
tegrated CAD/CAM DBMS. Data bases supporting Hughes’ PWA (Printed Wir-
ing Assembly) and Producibility Feedback applications were obtained for
evaluation testing. Although most discussion concentrates on mechanical
manufacturing; the developed methodology and tools for CAD/CAM data
management also apply to other design and manufacturing domains such as ar-

chitecture and electronics.

xiv

CHAPTER 1
INTRODUCTION

The goal of this dissertation is to develop sophisticated data management
facilities for maintaining Computer-Aided Design (CAD) and Computer-Aided
Manufacturing (CAM) data bases. The product of this research is the theoretical
design of an object-oriented data model, ODM, and the implementation of an
ODM computer software prototype. This work focuses on mechanical design,
engineering, and manufacturing, specifically product definition data generated
during initial design phases. Detailed analysis of CAD/CAM application and
data management requirements were conducted to produce the ODM functional
specifications. This document presents the results of this analysis and an evalua-
tion of ODM toward achieving the goals of integrated CAD/CAM data manage-
ment systems. Although most discussion concentrates on mechanical manufac-
turing; the developed methodology and tools for CAD/CAM data management

apply to other design domains such as architecture and electronics.
1.1 History of CAD/CAM and CAD/CAM DBMS

The first CAD systems were essentially computer drafting systems. In
the early 1960s, general purpose graphics software and self-contained drafting
workstations were introduced. Ivan Sutherland’s Sketchpad [Sut65] system pro-
vided the theoretical foundations for future graphical representation. CAD sys-

tems entered the commercial market in 1963 when General Motors announced

its first CAD workstation, DAC/1 (Design Augmented by Computers) [Tei85].
By the late 1960s, major acrospace corporations like Lockheed, McDonnell
Douglas, and Boeing began to explore the use of computer graphics for aircraft

and missile design,

CAM systems originated in the 1950s when Numerical Control (NC)
machines were designed and built. In the 1960s Lockheed-Georgia started in-
tegrating CAD and CAM by using computer drafting systems for NC part pro-
gramming. It wasn’t until the 1970s that CNC (Computer Numerical Control)
and DNC (Direct Numerical Control), as we know them today, were introduced

to the manufacturing industry.

CAE (Computer-Aided Engineering) is another critical aspect of
mechanical CAD/CAM environments which has become increasingly sophisti-
cated. Engineers now rely on computer programs for structural analyses such as
finite element and load stress analysis. Simulation of motion, friction analysis,
and tolerance analysis enable the study of dynamic characteristics and behavior

before production line fabrication and assembly is initiated.

Administrative and business accounting systems contribute to another
segment of automation in the manufacturing industry. These systems maintain
inventory, billing, and purchasing functions as well as employee systems such
as personnel and payroll. Steadily over the past 20 years, comprehensive

software packages are computerizing most administrative tasks.

Many independent computer application systems, such as those
described above, have been built to support and promote CAD/CAM technolo-

gy. Although some are specific to manufacturing and others are general pur-

pose, each of these applications requires input data and produces results as out-
put. The sources and types of data, and input and output methods, vary con-
siderably. Until recently, the benefits of automating application tasks
outweighed the cost of data preparation and dissemination. However, as the
scope and use of these systems has increased, production inefficiencies are
resulting from the overhead of data access, preparation, and distribution. In
most cases, personnel extract input data from hard-copy worksheets or reports
and manually code it to conform to the specifications of the software system.
Because application systems are generating their own specialized data bases,
managing the storage and archival of magnetic and hard-copy data becomes a
task in itself. It is estimated that personnel spend 10-30% of their time searching
for data sets; not necessarily accessing the data, but simply trying to determine
which report, file, or data base contains a particular piece of information
[Mel84).

In the future, the role of the computer will be amplified. A general con-
sensus in the manufacturing industry is that a Computer Integrated Manufactur-
ing System (CIMS) is the key to increased productivity [Mel84, Hes83]. New
generation applications like expert systems for production control and process
planning, Flexible Manufacturing Systems (FMS), and robotics, are performing
decision-making tasks. However, the potential benefit from intelligent systems
can only be achieved if data management inefficiencies are overcome. Integrat-
ed CAD/CAM DBMS can help solve the information bottleneck by streamlining

the exchange of data between computer application systems.

1.2 Scope of this research

Based on a detailed analysis of CAD/CAM data management require-
ments, I identified four desirable goals of integrated CAD/CAM DBMS. These
goals, presented in Chapter 2, promote effective generation and utilization of
CAD/CAM data throughout the entire manufacturing life cycle. Three aspects
of my requirements analysis included: (1) reviewing the current state of
CAD/CAM DBMS tools and technology, (2) observing CAD/CAM data
management in practice at three major acrospace corporations, and (3) project-
ing ahead to identify future data management needs for supporting next genera-
tion CAD/CAM application systems. [discovered that the engineering drawing
is the main source of data in a CAD/CAM environment. Unfortunately, existing
data management tools cannot represent the semantic information which
designers, engineers, and manufacturers repeatedly extract from an engineering
drawing. This research proposes data management methodologies capturing the
conceptual organization of CAD/CAM data represented in an engineering draw-

ing.

In Chapter 3, I discuss four DBMS capabilities contributing to the high-
level goals of integrated CAD/CAM DBMS. Each of these features addresses a
limitation in current data models and DBMS implementations. Based on my re-
quirements analysis, I concluded that an object-oriented data model best fulfills
the structural organization of CAD/CAM data. Chapter 4 describes object-
oriented models adopted by programming languages, data management, and
knowledge representation. I review the evolution of object-oriented systems and

their resulting strengths and weaknesses.

The theoretical design of the object-oriented data model, ODM, is
presented in Chapter 5. ODM, based on set theory and predicate logic, over-
comes many deficiencies of previous object-oriented representations. Objects in
the model are constructed from four basic components. Primitive relationships
between components establish aggregation and generalization networks, and

ODM inferences are derived from these networks.

The implementation of an ODM computer software prototype is detailed
in Chapter 6. ODM is implemented in T, a lexically scoped dialect of Lisp, and
currently operates on Vax and Apollo networks in UCLA’s Computer Science
Department. [discuss data entry and data manipulation languages which I
developed for interfacing with the ODM software system. Dialogues of direct
interaction with the system, presented in Chapter 6, serve as proof of concept by
demonstrating how ODM fulfills the functional specifications prescribed in
Chapter 3. Examples of heterogeneous and hierarchical data types, semantic

constraints, and dynamic schemata in the ODM prototype system are described.

Chapter 7 discusses related CAD/CAM DBMS cfforts in research and
industrial environments. The objectives of corporate CAD/CAM DBMS pro-
jects differ significantly in scope and depth compared to the goals of research
groups. In addition to CAD/CAM applications, I also review work addressing
two extended DBMS capabilities: semantic constraint maintenance and dynamic

schema facilities.

Evaluation of ODM and its prototype is presented in Chapter 8. Two ap-
plication systems at Hughes serve as a test bed for evaluating ODM’s goals. 1

demonstrate that ODM is sufficient for maintaining existing data bases extracted

from Hughes' PWA (Printed Wiring Assembly) application. More importantly, I
show how ODM supports a conceptual organization of PWA data most natural
to design and manufacturing experts. ODM also promotes effective manage-
ment of semantic data; nonexistent in current PWA data bases and management
systems. The Producibility Feedback system at Hughes also benefits from the
novel capabilities offered by ODM.

Chapter 9 concludes with the contributions of this research, limitations
of the existing version of ODM, and directions for future research. I also discuss
the applicability and relevance of this work to other domains. To aid the reader,
a list of abbreviations and acronyms used in this document can be found in Ap-

pendix A.

CHAPTER 2
MCTIVATION AND GOALS

Computer-Aided Design and Computer-Aided Manufacturing
(CAD/CAM) are indispensable in today’s industrial centers. As a result of
strong and steady CAD/CAM growth over the past 20 years, facilities for.
managing design and manufacturing data have been required. CAD/CAM Data
Base Management Systems (DBMS) fill this role. In the following section, I in-
troduce CAD/CAM DBMS by discussing the evolution of three different
categories of CAD/CAM DBMS. Two of the categories, data bases for CAD
drafting systems and data bases for geometric modeling systems, are used exten-
sively but are limited in scope and functionality. This dissertation focuses on the
third category, integrated CAD/CAM DBMS, which are rapidly emerging in

design and manufacturing industries.
2.1 Evolution of CAD/CAM DBMS

CAD/CAM Data Base Management Systems maintain data used during
design and manufacturing operations. The sophistication of these DBMS varies
tremendously. The oldest and most widely used systems manage data for only a
single CAD or CAM application. The two most popular applications which in-
clude facilities for data management are CAD drafting systems and geometric
modeling systems. Below I discuss the uses of these systems and the role of

their associated data bases.

2.1.1 CAD drafting systems

CAD drafting systems provide tools to generate engineering drawings on
a graphics monitor. Facilities for drawing lines, curves, and other graphical en-
tities help designers build a graphical model of a part or assembly. Data is usual-
ly entered into a graphics workstation using menus, function keys, and optional
command language. Because these systems represent an object graphically,
they are used mainly for initial generation of drawings and for future display of
the designs. Automatic reproducibility of a drawing reduces the dependency on
the traditional engineering blue print. With a CAD drafting system, drawings
can be displayed at any time on a single workstation or on any remote worksta-
tion. Also, if the CAD system supports a graphics standard, such as IGES (Ini-
tial Graphics Exchange Specification) [Ini83], the graphical data can be trans-
ported to other CAD systems and displayed. The most popular drafting systems
are CADAM, Computervision, Applicon, and Calma. At Lockheed, statistics
have shown that turnaround time for a design has been reduced by 30% since
the introduction of the CADAM drafting systems [Nas83].

Recent innovations in graphics hardware and software have advanced
the development of sophisticated drafting systems [Mac80, Tei85]. Display fa-
cilities usually include graphical transformations such as scaling, translation,
and rotation. On many systems, three-dimensional transformations are available
for generating multiple perspectives. However, the data bases of drafting sys-
tems are system dependent. Except where data has been translated into a stan-
dard format, like IGES, the data bases can only be accessed and manipulated for
graphical display. These systems are self-contained and impenetrable; there-

fore, it is very difficult, if not impossible, to extract symbolic information from

CAD data bases. Queries about graphical entities, such as lines or points are not
supported. Textual information which is entered on a drawing cannot be casily
accessed. For example, designers at Lockheed, using CADAM, must enter Bill
of Materials (BOM) and Parts List (PL) data twice on the drawing and a third
time as input to their Computerized Parts List (CPL) system. It is impossible to
retrieve the BOM and PL. data for use by other application systems. Systems
such as CADAM and Computervision have additional facilities for geometrical
computations from the graphical model, such as volume, surface area, moments
of inertia, and structural analyses. They do not, however, provide the sophisti-
cated modeling facilities of dedicated geometrical modeling systems, discussed

in the next section.
2.1.2 Geometric modeling systems

Geometrical modeling systems generate a mathematical model of a
three-dimensional part based on its geometric properties. Unlike drafting sys-
tems whose input is graphical, the input for geometrical systems is textual or
procedural. In some systems, a graphical display may be produced as a visual
aid to the designer, but the primary representation is in terms of geometrical
properties. Many different types of geometrical models have been developed.
The two best understood and most important representation schemes are boun-
dary representations (B-rep) and constructive solid geometry (CSG) {Req). B-
rep models represent solids indirectly by explicitly representing the solid’s topo-
logical boundary rather than the solid itself. A solid is modeled as a boundary
representation by segmenting its boundary into a finite number of bounded sub-
sets called faces or paiches, and representing cach face by its bounding edges

and vertices. Figure 2.1 shows the boundary representation of a rectangular py-

ramid using a triangulation method. Intergraph, Calcomp, and Autotrol [Tei85)
are three companics offering geometric modeling systems based on variations of
B-rep models.

Figure 2.1 B-rep model for a rectangular pyramid

In a CSG model, solids are defined as combinations of solid building
blocks similar to volumetric addition and subtraction. The representations are
ordered binary trees whose non-terminal nodes represent set operators such as
union, intersection, and difference; and whose terminal nodes are the building
blocks representing regular solids such as cube, sphere, and rectangular solid.
Figure 2.2 exemplifies a CSG representation. PADL [Voe], one of the original
CSG systems, was developed at the University of Rochester. Both GMSolid
[Tei85] and McDonnell Douglas’ UNISOLID [Tei85] are based on the PADL

system.

10

Figure 2.2 CSG tree

The analysis tools of geometric modeling systems compute basic en-
gineering properties such as surface area, volume, and center of gravity. Finite
clement models are also generated from geometrical data bases for analysis of
propertiés such as heat flow and elastic deformation. Unfortunately, geometric
modeling systems suffer from the same drawback as CAD drafting systems.
Their data bases are maintained in system dependent formats, therefore, data
cannot be exchanged among other application systems. Only the analysis tools
within one package can be applied to the data sets produced by that package. It
is rare to be able to transport a geometrical data base from one modeling system

to another. These systems do not support interactive access and query capabili-

11

ties for geometric entities such as surfaces, edges, and vertices. Although there
is a direct correspondence between the graphical representation of a part and its
geometric representation, this relationship is generally not captured in the data
bases. For instance, if the dimensions of a part are modified using a CAD draft-
ing system, these changes affect the graphical data base. If a separate geometric
modeling system is employed, corresponding changes in the geometry input
data are also necessary. Until the appropriate modifications are made to both
data bases, prior geometric analyses (based on previous graphical data) are no

longer valid.
2.1.3 Integrated CAD/CAM DBMS

In the previous sections I have emphasized the difficulties of trying to in-
tegrate data bases used for drafting and geometric modeling. General purpose
DBMS used in other facets of design and manufacturing such as BOM process-
ing, process planning, and inventory all share this same limitation. In part, data
management inefficiencies have resulted from the growth of application pro-
grams over the past 20 years. As CAD/CAM systems were developed, the pri-
mary goal was to automate a design or manufacturing task. The data flow to
and from an application system was regarded as a minute operational detail,
rather than a critical consideration. To overcome these data flow gaps, indus-
tries must focus on the task of data management as an integral part of the design
and manufacturing life cycle, not merely a process driven by an application sys-

tem.

The mandate of future integrated CAD/CAM DBMS is to facilitate ac-

cess by humans and computer programs to information required in design and

12

engineering, production planning and manufacturing, and administrative and
business operations. During my analysis and evaluation of CAD/CAM data
management systems, I did not find any fully integrated operational systems.
This ambitious aim entails four CAD/CAM DBMS goals which I present in the

following section.
2.2 Goals of integrated CAD/CAM DBMS

Manufacturing corporations are looking toward integrated CAD/CAM
DBMS for achieving a Computer Integrated Manufacturing System (CIMS).
New DBMS capabilities and functionality cannot, however, be formulated
without a detailed analysis of information management needs. CAD/CAM data
management techniques range from formal data entry methods to informal re-
port distribution. For this research, employees at Lockheed Corporation and
Rockwell International assisted me in the requirements analysis [present below.
At both corporations, 1 interviewed designers, engineers, and manufacturers, in

addition to data management personnel.

The first objective of these site visits was to understand how a manufac-
tured product is represented during each of its production phases. At both cor-
porations, I reviewed the content and organization of their data bases, and the
types and uses of design, engineering and manufacturing data. I discovered that
in addition to specific product data, there is auxiliary data supporting design and
manufacturing operations. Another critical aspect of the modeling process is the
exchange of data among CAD/CAM systems, between manufacturing processes,
and from department to department. Second, I aimed to solicit employee

recommendations for improving CAD/CAM DBMS functionality. I queried

13

designers, manufacturing planners, and manufacturing engineers to help isolate
deficiencies in their current systems and to request suggestions for improve-
ments. Because I was interested in high-level user needs, I discussed these is-
sues with manufacturing personnel rather than data management employees.
During these interviews, I hoped at best, that users would verbalize some
desired capabilities or, at worst, I would observe them at work and try to iden-
tify limitations of existing systems. Iinvited suggestions by posing questions of
the form: ‘‘What if you had the capability 1o ...?"", Using their responses along
with my observations, 1 obtained a good understanding of what is needed in an
integrated CAD/CAM DBMS.

Some CAD/CAM DBMS researchers fear that end-users have not been
consulted about existing deficiencies and desired improvements [Pro81]. As a
result of my meetings at Lockheed and Rockwell, 1 was able to observe, first
hand, CAD/CAM data management in practice. Through discussions and addi-
tional analysis, I have identified four key goals which integrated CAD/CAM
DBMS should strive to achieve. In Chapter 8 I revisit these goals by evaluating
the object-oriented data model, ODM, developed as a result of this research.

2.2.1 Conceptual centralization

Engineering drawings are the source of 90% of the data maintained in a
manufacturing industry [Can83]. Drafting and design phases generate the en-
gineering drawing, and throughout the entire manufacturing cycle, data is
abstracted from the drawing. In no sense is the data explicitly represented, rath-
er, design and manufacturing personnel must interpret the drawing and extract

information relevant to their needs. For instance, a process planner identifies

14

features in the drawing which require sequences of manufacturing processes. An
electrical engineer looks for features pertaining to electrical components. A tool
designer extracts data necessary for deciding which tools to use for fabrication.
These diverse interpretations areé recorded in textual verbiage on hard-copy
forms and reports, batch-updated inaster and transaction disk files, and as anno-
tations to hard-copy and on-linc engineering drawings. Figure 2.3 shows a
simplified chart of data flow at Lockheed [Can83, Lew83, Nas83). This diagram
illustrates the key role which an engineering drawing plays in providing data for
other manufacturing systems. It also illustrates how the number and types of

data repositories multiply as the design/manufacturing life-cycle progresses.

The absence of data centralization is cited as a major cause of data
management inefficiencies [Ahr84,Liu85]. Unfortunately, because graphical
data is generated first, it is regarded as the kernel of CAD/CAM data bases. As
discussed in section 2.1, graphical representations are system dependent and
single-purpose. Data bases from the CADAM system, used widely at Lockheed,
are efficient representations for the drawing system, but afford no utility outside
the confines of CADAM. Yet, all geometry, dimensions, and notes are recorded
in the data bases. Instead of regarding a CAD data base as the kernel, we must
adopt neutral representations for design and manufacturing data compatible with
the modeling needs of all application systems. One option, discussed below,

proposes a single integrated data base for all data management and processing.

Although the benefits of one integrated data base may appear desirable, a
general opinion is that a single centralized DBMS is not a pragmatic solution
[Bro84]. From a corporate point of view, the overhead involved in building

such a system and the subsequent conversion is prohibitive. We are not yet con-

15

PaaL007 je moy eleq €2 einbiy

["dous] 8dueul : QU Q
2o S i ™ R o
lspalet

ol & Sy

AN3JALYYd3a

16

vinced that a single DBMS can accommodate all the specialized requirements of
CAD/CAM data. Furthermore, the amount of CAD/CAM data is voluminous. At
Lockheed, a single L-1011 required 150,000 to 200,000 engineering drawings.
Relying on a single DBMS under these circumstances is risky. Nevertheless,
there are many instances where data can and should be integrated to streamline
data flow throughout the manufacturing cycle. In lieu of providing a single, all-
encompassing data base, an integrated CAD/CAM DBMS should support con-
ceptual centralization of CAD/CAM data. Conceptual centralization does not
promote a physically centralized data base, or even a single DBMS, however, it
cases the task of accessing and retrieving information by proposing new

methods for organizing distributed CAD/CAM data.

One aspect of conceptual centralization provides a directory or map for
locating sources of data. This goal conceptually merges different data resources
such as multiple data bases, computer installations, off-line files, and reports. At
Rockwell, the amount of on-line secondary storage is limited, therefore, a semi-
monthly archiving to tape is necessary. However, engineers generally need ac-
cess to data sets for more than two weeks, resulting in a great deal of archive
searching and loading. The archive management system at Rockwell is primi-
tive and inefficient; engineers resort to manually scanning magnetic tape listings
to locate archived data files. A directory organization which allows references
to multiple DBMS, different computer installations, disk files, and hard-copy
files would be invaluable [Noc84).

Another aspect of conceptual centralization promotes the integration of
data. Below I present three interpretations of data integration; each desirable in

a CAD/CAM cnvironment and attainable through conceptual centralization.

17

First, integrating heterogeneous data types such as graphical, mathematical,
manufacturing, and administrative data can result in improved efficiency for
personnel who must consult different data medium to gather required informa-
tion. At Lockheed, GENPLAN is an interactive system used by manufacturing
planners to generate a process plan for detailed part fabrication [Kam831. GEN-
PLAN has been hailed as a success and is praised by the manufacturing planners
who use it. The program solicits, in a dialogue fashion, product data including
features, materials, and treatments. The program, however, is not integrated
with any of the data management systems. It is a stand alone program whose
output is a process plan. A manufacturing planner using the GENPLAN system
must interpret an engineering di.wing to extract features relevant to process
planning which are requested by the program. The user must also reference ad-
ditional documents for auxiliary data. Given the complexity of the drawings,
considerable efficiency could be gained if the planner had access to data bases
containing the required information. For exampl.. if GENPLAN is planning
hole drilling processes, the planner may need to respond to a question such as:
What is the diameter and tolerance of a particular hole feature? For this exam-
ple, as with many other feature identification queries, it would be easier to pose

this query to a data base than to visually scan a drawing for the information.

Furthermore, other departments retrieve the same data in the same
fashion. A hard copy of the process plan is included as part of a shop order in-
struction booklet delivered to the NC programming department, the tooling
department, and the production shop. The process plan is also added to a master
disk file storing all process plans (the Operation Sheet file). Any modifications

to the plan must also be distributed to the departments. If the input and output

18

data of systems like GENPLAN were integrated, subsequent uses of the data
would be streamlined.

A second interpretation of data integration refers to the ease of adapting
data for use by application programs. Ad hoc approaches in the past maintained
separate data bases for individual applications. For n application programs and
data bases, transferring data between one program and any other requires a total
of n(n-1) pre- or post-processors. A more intelligent approach keeps relevant
data in a centralized DBMS and interfaces the application programs to the data
management system. This method reduces the number of interfaces to . Im-
proved methods for transporting data between independent data bases are in
development [Hoo85]. Transport mechanisms which are transparent to users

and application programs, further promote conceptual centralization,

The ability to support multiple representations or perspectives for the
same data object is a third interpretation of data integration [Eas78]. A graphi-
cal representation in terms of graphical entities differs significantly from a finite
clement model used for structural analysis. Nevertheless, both are representa-
tions for the same object and should be maintained in a consistent fashion. In
current data base models, facilitics for multiple views construct different
subschemas from elements of the schema. Multiple perspectives differ from
multiple views because each representation is complete and self-contained for a
given category of data. For example, a graphical perspective completely
describes a two-dimensional display of an object; an engineering perspective
completely defines a structural mode! of the object; and an administrative per-
spective completely specifies an object in terms of its production schedules,

marketing goals, and inventories.

19

In a static read-only data base environment, multiple perspectives are
compatible with conventional data base access and query operations. However,
when we allow updates, we introduce the need for maintaining consistency
across all perspectives. The consequences of violating consistency in this en-
vironment are costly. Constraints can be imposed within a perspective, such as
the following geometric equality: the sum of the angles of a triangular face
equal 180 degrees. Constraints must also be enforced across different perspec-
tives. For example, if an object’s dimensions are increased, then a modification
is also necessary for the amount of raw material needed to manufacture the ob-

ject.

The lack of data integration results in an enormous amount of data
redundancy and the overhead for maintaining consistency is excessive. At
Lockheed, most departments maintain their own data, consequently, product
data is replicated many times throughout its manufacturing life cycle. Concep-
tual centralization eliminates replicated data and ad hoc distribution of informa-
tion because all data bases arc available through a centralized directory. The
result is a concepiually, though not physically, centralized view of CAD/CAM
data.

2.2.2 Part-oriented BOM hierarchies

Although data sources and data medium vary throughout a manufactur-
ing corporation, a single conceptual organization of design and manufacturing
data dominates. It is a recursive object-oriented organization derived from the
manufacturing principles that ‘‘assemblies are composed of parts’’ and *‘parts

are composed of features’’ . This organization typifies a BOM (Bill of Materials)

20

hierarchy. Throughout each phase of manufacturing: design, process planning,
fabrication, and assembly, a product is naturally viewed in this hierarchical

fashion.

Application systems also regard a ‘‘part’’ as the major entity of the data
base. Assemblies, sub-assemblies, features, and attributes are described with
respect to a given part. Most data 1 trieval focuses on attributes of a part, rather
than all parts exhibiting a given attribute. For instance, a process planner may
retrieve the diameter, diameter tolerance, surface finish, and length tolerance of
a precision hole of part x. However, a request for all hole features with diameter
equal to .25, diameter tolerance equal to .001 and surface finish equal to 50 is
unlikely.

To aid my understanding of CAD/CAM DBMS limitations, Lockheed
compiled a list of 32 desirable queries (Figure 2.4) which their DBMS cannot
process directly or interactively [Led83). Only five of the 32 queries,
(4,5,6,12,19), are not keyed on assembly, part, or feature. Three queries, (1,2,3),
map direcily to a BOM hierarchy. Users would like to access BOM data na-
turally and intuitively, by navigating through a BOM hierarchy. Unfortunately,
the logical and physical data models of CAD/CAM DBMS, including those at
Lockheed, do not directly reflect a conceptual BOM organization. Lockheed’s
IMS data bases, used for their BOM system, represent the wses and used-in rela-
tions in a standard paris explosion schema such as the one shown in Figure 2.5.
This representation notoriously limits data manipulation during BOM process-
ing. Traversing BOM hierarchies to an unspecified depth is non-trivial, and ob-

taining a BOM parts list requires an overnight batch job.

21

(1)
{2)
(3)
(4)
(5)
(6)
(7
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
amn
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)

{27

(28)
(29)
(30)
(31)
(32)

What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
What
¥hat
What
What
What
What
¥hat

sub assembly/ies does this part relate to?
assambly/ies does this subassembly relate to?
are the part requirements for this model?

is the latest engineering change of this part?

is the aircraft effectivity of this change letter?
gecmatrical changes must be made to satiafy this change?
vertices compose this edge?
adges compose this surface?

surfaces compose this feature/detail?

features/details compose this part?

NC path ia related to this surface?

is the geometry of the cutter related to this NC path?
is the NC access code for this surface?

is the finish geometry of this surface?

are the tolerance specifications of this feature?

are the tolerance specifications of this surface?

is the grain direction of this part?

fabrication stock relates to this part?

standard shape relates to this fabrication stock?

is the surface normal for this surface?

is the datum plane of this part?

gensral notes relate tc this part?

general notesa relate to this feature?

general notes relate to this surface?

general notes relate to this edge?

general notes relate to this vertex?

are the finish specifications for this part?

are the process specs for this part?

are the final condition specifications for this part?
are the material specifications for this part?

are the heat treatment specifications for this surface?
classification code(s) relates tc this feature?

Figure 2.4 Lockheed sample queries

22

PART#| DESCRIPTION | NAME

USES[l USED-IN

PART# | Qry PART# | aTY

Figure 2.5 Lockheed BOM schema

If we extend the traditional notion of a BOM hierarchy to a more general
containment hierarchy, we can use this organization to denote relationships
between parts and features. In addition to expressing relationships like ‘“‘assem-
blies contain parts’’, we can also express the relationship that ‘‘parts contain
features’’. Four of the Lockheed sample queries, (7,8,9,10), request data about
part or feature composition. Figure 2.6 shows a variation of a composition
hierarchy for the geometry of a boundary-representation model. In Figure 2.6,

objects like surfaces, curves, and points are features of a solid volume.

The remaining 20 queries of Figure 2.4 retrieve attribute data keyed on
assemblies, parts, and features. By traversing a BOM and feature composition
hierarchy, a user can isolate the assembly, part, or feature in question and access
any attribute values of that object. At Lockheed, retrieving attribute data is ac-
complished through PDDS (Product Design Data System) installed in 1981
[PDD83). PDDS is one phase within a corporate-wide IDB (Integrated Data

23

CEOMETRY-ELEWNENT

H-DEr1MED-RIL
LOORD=~SYST/ SET=-0F=-COOAD~
nam x SYST/PLANS
) consIsT-Or
[s
14-pETINS-
I
SURFACL~
aserey lurmpspys] RS
u-un.-:il_
13-300RED-BY
DS
cowTota
COuSI1STS=0F
HLONCE-T0 18-2ETIMD-10
CURVE-
OETEY |arREsTATS cave LoMCE-TO e
T5=I0= T coNS1STE=OF
CovE$-ATTER COMS-AFTER-IN
T=LOMT CURVE-SET
consIsTS-OF
ALONCE-TO
crave-3ic
COMLS-AFTRY-
ll-wqﬂ
15-3ETLIRD-BY
s
coMES - DEF=POINT M 10 POINT-2ET
coRve-sLc coNIsT=0f
1S-DERIVED-USING 15-USED~TO=DERI VE M0~ MLONGE-TO
L TRY!
ComS1ETI=Or
PERIVATION-
L -

Figure 2.6 Boundary reprasentation model

24

Base) project initiated in 1976. PDDS consists of four IMS data bases used by
engineers during design phases. It operates interactively via menus, function
keys, and formated output displays. To retrieve a particular data item, a user
must determine which formated display contains the requested data, and retrieve
that display for the given part. A variety of formated displays are available and
interactive validation of input data is performed. Nevertheless, this mode of user
interaction is a holdover from manual methods emphasizing forms and reports.
For some functions, such as initial parts list input, the form approach is ideal.
Usually, however, the formated screens present more information than neces-
sary. This method of data retrieval reduces the efficiency of both the user, by
necessitating visual data filtering; and the DBMS, by excessive data retrieval
and formatting overhead. Cuwrrently, PDDS resides only within the engineering
department. Hard copy reports are still the means of data communication

between engineering and other departments [Lew83].

Reviewing Lockheed’s sample queries and analyzing the conceptual or-
ganization of manufacturing data has served two purposes. First, these activities
have justified my intuitions that physical composition and containment are cen-
tral themes underlying design and manufacturing processes. Second, I observed
a gap between the conceprual composition models used by personnel for mani-
pulating data, and the logical DBMS models. In a domain so influenced by the
composition and aggregation of physical objects, it is important to maintain the
conceptual model by structuring data in a way that reflects its natural organiza-
tion. An integrated CAD/CAM DBMS supporting part-oriented BOM hierar-
chies can bridge this gap. It will also encourage the ubiquitous composition

methodology already practiced in CAD/CAM environments. The representa-

25

tion, however, must also be robust and comprehensive. It must be robust
enough to respond to queries that are not object-oriented, and to allow data ac-
cess, not only by traversing up or down the BOM hierarchy, but also by entry
into the middle of the hierarchy. A comprehensive model will support other
data in addition to part-oriented data. For instance, if relevant information is
most naturally represented in a relational format, it should be possible to emu-

late a relational table or call an auxiliary relational DBMS.
2.2.3 Customized representations of assemblies and parts

Data bases of commercial applications differ from CAD/CAM data
bases in a number of ways. One difference reflects the structured nature of com-
mercial applications compared to the unstructured design reality modeled by
CAD/CAM DBMS. The data in commercial applications is relatively static in
format. For instance, in a bank data base, an account is the primary data entity.
An account has an associated account number, customer name and address, bal-
ance, interest rate, and statement date. These data fields are well-defined and all
accounts conform to this format. Although values of attributes like balance and
rate vary over time, the relationships and data fields are fixed. In a CAD/CAM
environment, the format and organization of the data differs from entity to enti-
ty. Objects, features, attributes, and relationships are assembly- and part-specific
providing little uniformity in the structure or content of the data. To model each
assembly or part, designers express many unique relationships which differ from
part to part. No fixed set of relationships describes all entities. For example, all
commercial airplanes do not contain the same parts; morcover, each L-1011 was
customized and therefore contained different specifications. Few empirical stu-

dies have been devoted to the detailed structure of design, and formal literature

26

on the subject is minimal. In practice, design procedures are determined by per-
sonal judgement and conventional methods, with few actions based on or

derived from formal considerations [Eas78].

The conceptual schema of CAD/CAM data should be viewed as an
abstraction of the engineering drawing. The drawing reflects the form, structure,
and relationships of entities and features to be manufactured. Likewise, the con-
ceptual model should be capable of depicting important design data and rela-
tionships, and facilitate their maintenance. It should aid but not restrict users in

their conceptualization of design.

Ideally, this same preciseness should be captured in data management
systems. Representation facilities should accommodate multiple design and
manufacturing techniques. Representing a B-rep solid model (see Figure 2.6)
requires different entities and relationships from those needed for a CSG model.
If a rotational part, shown in Figure 2.7, is to be fabricated on a lathe, charac-
teristics about inner and outer contours, faces, and slots are important. Howev-
er, if a sheet metal part is being designed, (see Figure 2.8), relevant attributes in-
clude contour type, contour form, and feature characteristics such as cutouts,

flanges, and joggles.

A second difference between commercial and CAD/CAM data results
from the dynamic quality of CAD/CAM data. In a commercial data base, data
entities, attributes, and relationships can be identified a priori, through a process
called Data Base Design. Data base designers analyze the enterprise to be
modeled to determine the conceptual and logical data base organization. For in-

stance, the attributes of a bank account, and the relationships between customer

27

Figure 2.7 Rotational part

accounts and bank assests are established before any accounts are created. In a
design environment, the data organization cannot be determined before hand.
Engineering design simultancously defines the structure of a data base and as-
signs values to the structures. The resulting design data base represents the ar-
tifact through many phases from carly specifications to manufacturing instruc-

tions. The data entities and relationships are generated as a part is designed and

28

Figure 2.8 Sheet metal part

29

continue to evolve through the early stages of production.

Existing DBMS have been used successfully in domains where the struc-
ture of the data is fixed and constant. However, the use of generalized DBMS
for CAD/CAM data has forced data base designers to define neutral organiza-
tions which will accommodate all designs. The resulting logical model is ex-
ceedingly general to insure that all engineering drawings map onto the logical
schema. This phenomena also contributes to the gap between conceptual and
logical models described in the previous section. Bridging this gap with exist-
ing data management tools means constraining the data to fit into existing

models, thereby, losing the fidelity of the conceptual representation.

Customized representations for assemblies and parts help interleave the
design of a product with construction of the corresponding data base. If
manufacturing features such as flanges, webs, and cutouts are the building
blocks for designing a detailed part, then data base objects representing these
entities should also be available as building blocks of the data base. If objects
exhibit unique properties and relationships, it should be possible for designers to
record this information in a data base. Different composition of entities results
in different attributes and relationships [Eas78]). At Lockheed, the structure of
the IMS BOM data bases is static; therefore, critical design information which
design engineers used to design a part, or process planners used to define a fa-

brication plan, is lost [Lew83].

30

2.2.4 Incorporation of domain knowledge

CAD/CAM data base users expressed a desire for including application
knowledge within a data base system. Two strategies, presented below, can be
pursued for adding more domain knowledge to CAD/CAM DBMS.

The first strategy augments CAD/CAM data bases with corporation and
industry standards, and provides facilities for automatic enforcement. Corpora-
tion standards are conventions which the corporation has established and wishes
to enforce. Industry standards are recommended guidelines for specifications of
product attributes or processes. In every design field there are conventional
means for treating common situations, usually described in handbooks and
manuals, Some examples include: specification of hole tolerances and threading
procedures; sequencing of machining operations; acceptable finishing treat-
ments; and feature placement. Having a capability to verify standards and code
requirements, during design and data entry, climinates separate validation pro-
cedures.

At Lockheed, textual notes recorded on engineering drawings, including
BOM and Parts List data, are verified as an off-line batch job. Generally, initial
data is erroneous and must be re-entered. This validation process sometimes re-
quires as many as three iterations, each time returning invalid entries to
designers for correction. This iterative process may, in turn, necessitate
modification of initially valid data, for compatibility with corrected values. An
interactive approach for validating standards information would streamline the
design process and reduce turnaround time for data validation. Interactive vali-

dation also affords designers some aspects of training as a by-product. Immedi-

31

ate feedback results in fewer errors of the same type in the future.

A second approach for incorporating domain knowledge is to encode
design and manufacturing information which supports automated CAD/CAM
processes. The CAD/CAM industry is introducing many interactive synthesis
and analysis tools. These tools are aiding in tasks which were typically per-
formed manually by manufacturing planners and engineers. Two areas which
have shown potential for automation are generation of group technology codes,
and process planning. Although these tasks are already semi-automated, in most
cases it is necessary for users to manually enter part specification data and
parameters for cach job. Most of the necessary data resides in some form in the
data bases or the engineering drawing. However, to take full advantage of these
CAD/CAM tools, it is necessary to represent the data in a form which is amen-
able to application programs. Expert system technology is also helping to sup-
port analysis and decision making tasks. In many instances, the knowledge ex-
pressed in expert system rules can be incorporated within the schema structure

of design data bases.

APPAS (Automatic Process Planning and Selection) is a generative pro-
cess planning system developed by Chang and Wysk [Cha81]. The system
plans milling and hole-making processes by selecting appropriate machiring
processes for a surface based on surface geometry and accuracy requirements.
Figure 2.9 shows a sample dialogue between the system and a designer for plan-
ning a hole drilling process. Simple attributes such as reference point, hole di-
ameter, and fillet radius must be entered manually. In most cases, designers are
extracting the required data from an engineering drawing. Lockheed’s process
planning system, GENPLAN, suffers from the same limitations. Tedious and

32

iterative data input would be ecliminated if CAD/CAM data bases could
represent feature data explicitly. Furthermore, automatic maintenance of feature
data promotes global consistency throughout a manufacturing environment. A
single interpretation of an engineering drawing, recorded accurately and intelli-

gently, can be utilized by many subsequent CAD and CAM processes.

In the next chapter, I present the functional specifications for an integrat-
ed CAD/CAM DBMS supporting the following four goals detailed in the
preceding sections.

* conceptual centralization
¢ part-oriented BOM hierarchies
* customized representation of assemblies and parts

* incorporation of domain knowledge

33

(User’s input in lowercase and preceded with ‘‘==>’"7;
system responss in uppercase)
-=> add
SURFACE TYPE?
-=> hole
REF POINT? X, ¥, 2
--> 3.5, 2.25, 2.5
HOLE DIAMETER?
--> .125
CHAMFER? Y OR N
-—>y
CHAMFER TYPE:
1. SIMPLE LINEAR + UPPER
2. OUTER FILLET
3. INNER FILLER =~ REVISED
-—> 2
FILLET RADIUS?
~~> .05
HOLE LENGTH?

--> .025

Figure 2.9 APPAS interactive session

CHAPTER 3
FUNCTIONAL SPECIFICATIONS

In the previous chapter I described four major CAD/CAM DBMS goals
synthesized from my interviews with manufacturing personnel. These goals
represent high-level operational aspects of CAD/CAM data management. They
are not strictly independent but have many overlapping characteristics. None of
the goals correspond directly to a single DBMS function; they are the result of
many integral DBMS functions. I have proposed four novel DBMS capabilities
contributing to these CAD/CAM DBMS objectives. The functional capabilities
detailed below form the basis of the object-oriented data model, ODM, present-
ed in Chapters 5 and 6. In this chapter, I also indicate how each function sup-
ports the goals of integrated CAD/CAM DBMS, and how existing DBMS are
deficient.

3.1 Object-oriented semantic modeling facilities

The role of modeling systems is to represent and manipulate states of a
real or imaginary world in a form as natural as possible. Semantic modeling fa-
cilities minimize the gap between *he world and an electronic representation of
the world. Two aspects of semantic modeling involve the data semantics to be
captured, referred to as the schema; and second, the method of representing the
semantics, namely, the logical data model. For example, relevant data for an

airline reservation might include flight number, origin and destination cities, ar-

35

rival and departure times, seat assignments, and fare information. These data
items may be organized in many different ways; however, the aggregation of
this information comprises the meaning or semantics of an airline reservation.
The method of representation, or model, determines how the items are organ-
ized. Most commercial DBMS employ the network, hierarchical, or relational
model. Below I discuss the need for high-level data semantics and models in
CAD/CAM environments.

Capturing data semantics refers to the correspondence between the con-
ceptual meaning of a concept and the representation of the concept. A natural
association is best promoted when representational entities express significant or
identifying properties of domain concepts. For most CAD/CAM design data,
meaningful entities arc expressed as assemblies, parts, features, and associated
relationships. Graphical and geometrical representations discussed earlier are
non-semantic models. Most queries involve data at the assembly, part, and
feature level, not at the graphical or geometrical level. Non-semantic models are
important for specific tasks like two-dimensional displays, however, for
comprehensive and user oriented models, we must also represent entities such as
holes, slots, cutouts, and flanges; and provide facilities to manipulate them as

domain objects.

An analysis of Figure 3.1 emphasizes the difference between different
models. We can identify the item drawn in bold as 3 different entities. Graphi-
cally speaking, the item is a circle. If a designer was using a CAD graphics sys-
tem such as CADAM to produce this drawing, he or she would select a menu
item or function key to generate a ‘‘circle’’. In geometric terms, the bold mark-

ing in Figure 3.1 is a ‘‘curve’’ represented by a mathematical equation. If an en-

36

gineer was using a boundary-representation system to describe this part, the user
would input the equation of a curve. However, from a functional and operational
point of view, a manufacturing planner would identify the bold mark as a
‘“hole’’, Therefore, the object which is graphically recognized as a circle and
geometrically identified as & curve, has an additional semantic interpretation

based on its context and meaning within the engineering drawing.

Figure 3.1 Engineering drawing of a gasket

Some research efforts are trying to automatically generate semantic data
from graphical and geometrical data. Computer vision and pattern recognition
research addresses the problems of object and scene identification from two-
dimensional pictures [Win75,Han78). However, converting an engineering
drawing from a two-dimensional graphical image to a geometrical and semantic

feature representation is an extremely difficult task. Vision research has not

37

reached the sophistication necessary for these types of cognitive recognition and
interpretation tasks. Furthermore, the identification of semantic features and as-
sociated properties depends on the interpretation or perspective of the designer
or manufacturer. The Aole feature identified in Figure 3.1 has different meanings
to different people, depending on their use of the data. For electricians, a hole
indicates a path for electrical wires; to a thermodynamic engineer, a hole means
a source of heat loss. Each different interpretation affects the data which is ex-

tracted from an engineering drawing and maintained for subsequent use.

Because automatic generation of semantic data is not feasible, or even
desirable under certain circumstances, DBMS must provide facilities for enter-
ing and managing semantic data directly. A DBMS which supports semantic
entities encourages designers and engineers to build a data base for a product at
the same time as a graphical model of the part is being generated. Manufactur-
ing personnel who interpret engineering drawings for a specific application, like
process planning, can enter or retricve semantic data relevant to their own task.
Data consistency is also promoted by semantic entity representations; semantic
features are recorded once, and are then available for other users and application

systems.

Data semantics refers to what is being represented; semantic modeling
capabilitics, however, refer to how a concept is represented. Established
methods generally depend on one of three traditional data models: network,
hierarchical, or relational, Three major models have evolved because applica-
tions may be more suitable for one data model than another. Advantages and

disadvantages of each model are discussed in [Dat81, Ul180, Tsi82, Car79].

38

As discussed in section 2.3.2, I observed that a BOM hierarchy is the pri-
mary organization of design data, and the primary method of data access is
through assemblies, parts, and features. Although relationships express infor-
mation about assemblies and parts, data base users admit that the most frequent
way of accessing CAD/CAM data is by entity, not relationship [Liu85]. There-
fore, entities representing domain objects should be directly addressable.
Nevertheless, CAD/CAM objects also exhibit structural descriptions other than
containment or composition. Many descriptions preclude the use of a strict
hierarchy, necessitating a network organization relating CAD/CAM objects.
For example, geometrical entities, such as points, lines, and arcs compose topo-
logical entities, like faces and edges, which in turn compose solid objects. Rela-
tionships such as inside, connected to, bounded by, and ahove, convey structural
descriptions of objects, and carry additional information about the object. For
instance, if the relationship connecred to holds between two beams, it implies

that the length of the two connected beams is the sum of their separate lengths.

Current DBMS are used successfully for applications requiring relatively
few relationships compared to the large amount of data. Furthermore, in these
applications, relationships are constant and uniform across all data instances. In
contrast, CAD/CAM data requires complex and part-specific relationships link-
ing heterogeneous data items. Merely expressing M:N relationships is particu-
larly cumbersome and restrictive in a CODASYL network and IMS hierarchy
[Dat81,Car79, Enc83,Cod71]. These restrictions limit the semantic power of a

representation, resulting in an unnatural modeling environment.

39

The ease of use criterion is becoming an important factor when selecting
a data model. Based on this consideration, the relational model has gained popu-
larity for the following reasons. The table organization of relational models is
conceptually simple; the model supports a high degree of logical data indepen-
dence; and the use of declarative query languages minimizes physical naviga-
tion. However, the relational model is not always compatible with the natural
organization of application data. A row in a two-dimensional table represents a
mapping of domains. Data access is based primarily on the values of domains
denoted in a row of the table. This organization is unnatural and inefficient for
CAD/CAM applications where most data access is by part and the primary orga-
nization is hierarchical. Forcing data to conform to a relational model can
create two situations generally regarded as undesirable: ragged relations with re-
peating groups and null values [Gut82,Sto84], or expensive join operations

across many relations [U1180].

In theory, the hierarchical and network data models are best suited for
representing relationships between assemblies, parts, and features. Unfortuna-
tely, existing hierarchical and network DBMS implementations, such as CO-
DASYL and IMS, depend heavily on physical data base organization and cannot
directly represent conceptual BOM models. Their DML (data manipulation
language) requires procedural navigation through physical data paths. Figure
3.2 presents a simplified BOM listing for an automobile. In this two-
dimensional indented format, it is easy to recognize the BOM relationships

which exist between different automobile parts.

Car
Body 1
Fender 4
Bok 6
Engine 1
Pison 6
Rng 3
Vaive 12
Crarkshaft 1
Beaing 10
Figure 3.2 BOM data for an automobile

Figure 3.3 shows the logical schema for a BOM hierarchy in the network

model. Data instances in the network schema are shown in Figure 3.4.

PART

usesl 1 USED-IN
ary

LINK

Figure 3.3 BOM schema for CODASYL network model

Similarly, Figures 3.5 and 3.6 are examples of the same schema and data in a
hierarchical model. Neither model offers a clear, concise, and acsthetically

pleasing graphical representation. Nevertheless, data base designers and data

41

Figure 3.4 BOM datain CODASYL network model

CAR |4-
e—P
= =
> ENGINE BODY
e ___.—...—...
> 1 4 6 < ' 12 |4 4
RANK-
gHAFT > PISTON (4@~ VALVE FENDER
)
10 4 > 3 j— 6 &
BEARING > RING BOLT

42

base administrators (DBAs) must produce and manage diagrams in both models
which are exceedingly more complex than these examples.

PART

USES 1 i USED-IN

PART # | QTY PART# | QTY

Figure 3.5 BOM schema for hierarchical model

Depicting BOM schema and data in a relational model, as in Figure 3.7,
is an improvement. However, any evidence of a hierarchical organization is lost,

a major criticism of the relational approach.

The entity-relationship (E-R) data model [Che76] has been used mainly
as a data base design tool. The modeling facilities of E-R models allow a closer
mapping to the conceptual schema of an enterprise than hierarchical or network
models. In the E-R data model, an entity set represents the generic structure of
an entity or object, and a relationship set represents the generic structure of rela-
tionships among entity sets. So far, the E-R model best represents semantic in-
formation, and many current DBMS projects are based on the E-R model
[Bor80]. In Chapter 7, I review some of these efforts in detail.

43

I8pow jediyoselsly Ul elep NOg 9°¢ ainbig

AQOg

b mwozi
} 14v
YNVY
T V&ﬂ » NEY
m. maﬂ
9| 108
e| onu q AQO8
sg__ﬁm_ 4 H3aN34
INONG
A NOLSId
13VH
%
1108

IATVA

ONIV3

MAJOR MINCR QTY
Car Body 1
Car Eogine 1
Body Fender 4
Fender Bolt]
Engine Crankshaft 1
Engine Piston]
Engloe Valve 12
Piston Ring 3
Crankshaft | Bearing 10

'tc.

Figure 3.7 BOM schema and data in relational model

relationships.

45

Based on my observations and analysis, an object-oriented model fulfills
the requirements of CAD/CAM data. In an object-oriented data model, a se-
mantic domain entity is expressed as a concept or object and is uniquely ad-
dressable. Objects are combined and related in many ways to create complex
ob_jccts. Object-oriented models are characterized in detail in Chapter 4. I have
defined an object-oriented data model, ODM, incorporating the modeling facilti-
ties prescribed above. ODM, described in Chapters § and 6, combines an
object-oriented model with a network architecture. It provides a powerful, yet

flexible framework for representing and manipulating CAD/CAM entities and

An object-oriented data model directly supports part-oriented BOM
hierarchies. Two other CAD/CAM DBMS goals: customized representation for
assemblies and parts, and incorporation of domain knowledge, are also aided by
semantic modeling capabilities. In the part-oriented BOM hierarchy in Figure
3.8, nodes symbolize domain objects and links represent the uses or contains re-
lationship. Because objects are contained in more than one part or assembly,
BOM networks, a generalization of BOM hierarchies, allow multiple parents.
For example, the bolr object in Figure 3.8 most likely is used in many other
parts and assemblies, in addition to automobiles. Only the conzains relationship
is shown in Figure 3.8, however, other relationships can be merged with the
BOM organization. In Chapter 5, I formalize the contains relationship and other
relationships which are primitive in ODM. Chapter 6 describes domain-specific
relationships, and how they are created and manipulated in the ODM prototype.

3.2 Dynamic schema capabilities

A DBMS schema is a static collection of data types defining allowable
structures for data instances. The data types represent attributes, entities, and
relationships of the application being modeled. Schema facilities are usually in-
cluded as part of a comprehensive data dictionary package including a DDL
(data definition language) for defining and manipulating schema specifications.
In the following paragraphs I describe the role and capabilities of a dynamic
schema, and introduce an object-oriented methodology as the underlying foun-

dation of dynamic schema facilities in ODM.

Schema definitions are also referred to as mera-data because they define,

control, and help locate data instances to which the schema pertains. Schemata,

46

Figure 3.8 Part-oriented BOM hisrarchy

therefore, are a management system for the structure of the data instances.
Defining a schema and generating a data dictionary are expensive off-line tasks;
therefore, most DBMS adhere to a static schema definition. Traditional static
schemata define the organization of data by specifying data types and formats.
Once the definitions are declared, they cannot be interactively modified and are
expensive to change or extend. A static DBMS schema is analogous to the data
definition section in a computer program. Declared data structures are fixed
throughout the life of the program, and new data types cannot be:defined

47

dynamically within the program. To modify an existing data structure or add a

new one requires recompilation of the program.

The enormous overhead for data base reconfiguration due to schema
modifications has prohibited the practical use of a dynamic schema. Further-
more, in many applications the structure of data base entities can be completely
defined during data base design phases. CAD/CAM data, however, is qualita-
tively different. As I discussed in section 2.3.3, CAD/CAM data differs from
commercial data because the structure of CAD/CAM data grows with the design
of the artifact. All products do not conform to the same fixed structure, there-
fore, static schema definitions are not sufficient. Design objects may have soue
properties in common, but features of assemblies and parts vary considerably.
With dynamic schema facilities, schema specifications can be interleaved with
the design of an object. These capabilities allow interactive additions,

modifications, and deletions of schema structures during DBMS operation.

Active data dictionaries [McC82, Sch75] are being developed for brows-
ing and viewing schema definitions. In some implementations of the relational
data model [Eps77, Ora79] limited active and dynamic schema capabilities are
available through user definable views, deletable relations, and addition of new

attributes [Sto84]. Other efforts in these areas are reviewed in Chapter 7.

Dynamic schema capabilities are fundamental for achieving customized
representations of assemblies and parts discussed in section 2.23. In a
CAD/CAM data management environment with dynamic schemata, the distinc-
tion between schema and data begins to vanish. This effect reduces the artificial

convention that information must be either schema or data [Mai84]. In an elec-

48

tronics design domain, a resiszor is both schema and data. A resistor regarded as
a schema item specifies properties which all resistors have in common. A resis-
tor is a data instance when it is defined as a component part of a new PWA
(Printed Wiring Assembly) being designed. In the past, DDLs (data definition
languages) were only available to data base designers and administrators, and
schema definition was decomposed from normal data base usage. With dynam-
ic schemata and dictionaries, users can query the schema, in addition to modify-
ing or adding new structures. New data structures such as entities, attributes,
sets, and relationships are added in the same way as new data instances are ad-
ded, modified, or deleted. To build dynamic schema, however, it is necessary to
make data dictionaries more robust and user oriented. Figure 3.9 shows how the
distribution of DBMS tasks would shift in an environment permitting interactive

schema manipulation.

Dynamic schema facilities which I developed for the ODM prototype are
detailed in Chapter 6. I adopted an object-oriented methodology by viewing the
data dictionary as a management system for meta-data. In most commercial
DBMS, a dedicated DDL (data definition language) is used for schema
specification. Data base designers must specify physical characteristics and
define navigation paths. In ODM, data base structures are objects which have
knowledge about the behavior of meta-data. The system knows how to add a
new attribute to a relation, generate a new entity structure, or establish a new re-
lationship between two entity types in the same way that a DML (Data Manipu-
lation Language) adds a new instance of a record, relation, or set. Because the
system maintains information about schema and instance structures, it is possi-

ble to dynamically enforce consistency among existing structures and new enti-

49

syse) Juaswabeuew ejep jo vognquisia 6'c 8nbiy

SIOUPISUT vIEP

ojepdn 3 ‘A19nb ‘geadow ‘9jewaln-
uvotidraosap wwsyos

sywpdn 3 ‘Aienb ‘ssacoe ‘ajeard-

8seq WIPp TPIITUT PTYNQ-
KawuotyoTp T9¥ITUT PTING-
seatiTatid vweyos o

wiel ut esyrdiejus eqrIOSIP-

LR N R R R N R N LR]

seatiTwrzd Tepow Jo

WIS UT SOINIONIIE WEOYUDS OqIIdsep-

seaTiTWYZd Tepow ButIep-
Tepow wiewp Teoatbor 0o~

wwoyoss STweulp
Y3ITm sWaa

ruOUDE OTIRIS

I
N
sanurRiIsut eyep || I9sN
eqepdn 3 Lxenb ‘ssedow ’ajwerd- || aseq wiep
H
N}
Kzvuoraotp wlep utejuyew- ||
e89q ejep TPIITUT PITNQ- ||203RIIsSTUTWR®
A19uoTioTp wIwp pIInG- 1} °suq eIvp
N
It
seataTWTad Tepow ||
30 swye) uy unﬂuﬂuwuco SqTIOSIP- __ u.:huutﬂ
Topow e3ep [woybor Ioeyes- || esRq wIep
]
i
11
i

YITA SKEQ TPUOTIUIAUGD

50

tics. Examples and discussion in Chapter 8 focus on the utility of dynamic sche-

mata in an electronics design application at Hughes Corporation.
3.3 Semantic constraint maintenance

In general, constraints maintain a desired state in the real world. We
constrain the temperature of our home freezers to below zero degrees Cen-
tigrade, so the freezer contents won’t melt. In DBMS modeling, textual fields
are constrained to some maximum length of characters; otherwise, the physical
limitations of the DBMS and hardware systems might be exceeded. In the
manufacturing domain, two holes drilled in a sheet metal part must be a separat-
ed by a minimum distance to prevent structural flaws. Much of the CAD/CAM
data currently verified by human personnel falls into the category of restrictions

or constraints on data entities, properties, and associated relationships.

In section 2.3.4, 1 discussed a recommendation to incorporate industry
knowledge and standards into CAD/CAM data bases and I described scenarios
using domain information. With the introduction of semantic modeling facilities
in section 3.1, I now extend the use of semantic data by expressing constraints

over entities, relationships, and properties.

Conventional DBMS constraints maintain the integrity and consistency
of data instances. Validity constraints prevent polluted or contaminated data by
restricting the values, data types, and format of data instances. Consistency con-
straints restrict the structure of data to prevent update anomalies. For example, if
an employee data base contains information concerning an employee’s children,
and an employee is deleted from the data base; it is also necessary to delete the

employee’s children. Referential integrity addresses the maintenance of key at-

51

tributes in records. If the value of a key attribute changes, all instances contain-
ing that attribute must also be updated.

Maintaining integrity and consistency has even greater importance in a
highly robust CAD/CAM modeling environment. Users need to specify integrity
constraints over a single data item or among many different data items. Con-
straints take the form of restrictions on data values, like a range of temperatures
for heat treatment of a given material. They also express mathematical relation-
ships between data values which must hold, such as the following mathematical
equality between feed-rate, spindle speed, and feed for an NC operation: ‘‘feed-
rate = 2 (spindle-speed) (feed)'’. Structural relationships among features of
physical objects also impose constraints. Relationships, such as ‘‘part-A is-
supported-by part-B’’ and ‘‘part-X is-inside par:t-Y", exemplify necessary

design constraints.

A semantic constraint is a special type of semantic relationship between
data base entities. A relationship such as ‘‘swurface-x is orthogonal to surface-y''
supplies data about the orientation of two surfaces. If this statement is represent-
ed in a data base, it furnishes information about the design environment. How-
ever, the constraint *‘surface-x must be orthogonal to surface-y’’ imposes a res-
triction on the values taking part in the relationship; or from a semantic
viewpoint, imposes a restriction on the structure of the object being designed.
In design and manufacturing applications, constraints are relied on, not only to
maintain the integrity of the data representing a part, but also to maintain the
consistency of the design itself. Therefore, semantic constraints express restric-

tions on the actual part, not simply on the data [Fen85].

52

Semantic constraint management requires sophisticated facilities for ex-
pressing and maintaining constraints. I first address the issue of semantic con-
straint specification. A general facility for expressing mathematical, procedural,
and textual constraints is necessary. Many of the entities involved in a constraint
are data instances themselves, therefore, referencing data instances from within
a constraint specification must be supported. For example, in the constraint
‘feed-rate = 2 (spindle-speed) (feed)’’, cach item is a machining attribute of a
sheet metal part. Therefore, this constraint is interpreted as ‘‘feed-rate of part x
= 2 (spindle-speed of part x) (feed of part x)’’. A constraint expressing a rela-
tionship between two different data objects such as ‘‘surface x is-orthogonal-to
surface y'’ is defined as an instance of the relationship orthogonal-to, such that
surface x and surface y are attributes of the relationship. When surface x and
surface y are entered as data of the relationship orthogonal-to, the constraint sys-
tem must verify that the constraint is fulfilled. Constraint enforcement, present-
ed in the following paragraphs, considers another difficult issue of semantic
constraint maintenance, namely, when and how to recognize the violation of

constraints.

In contrast to conventional integrity and consistency constraints which
are declared during data base design and schema definition, semantic integrity
constraints may be entered at any time during data base processing. Three
modes are possible for signaling constraint violation. /ncremental consistency
checking maintains only those data instances created after a new constraint is
declared. Therefore, data entered before a new constraint is specified may be in
violation of the new constraint. The second mode, retroacrive checking, verifies

all data instances when a new constraint is declared. This process inspects all

53

data affected by a new constraint. The third mode combines retroactive check-
ing with a switchable enable/disable setting to turn constraint checking on and
off. In disabled mode, the overhead of keeping complete consistency during the
design process is eliminated [Eas86]. Only when a design is to be commirted

does the designer want to verify its consistency.

Another consideration of semantic constraint management is the method
of verifying constraint compliance or violation. In typical DBMS, datatype con-
straints are verified by computer operating systems; or by data dictionary facili-
ties in the case of value, existence, and referential constraints. Many
CAD/CAM constraints can also be verified by the DBMS or embedded pro-
gramming language. For example, mathematical constraints which involve
equality and inequality are generally verified by the DBMS implementation.
Constraints with a well-defined universal meaning can be easily enforced. How-
ever, relationships which dv not have a standard, quantitative definition and
verification procedure require additional mechanisms. For a relationship like
orthogonal-to, which represents a geometrical constraint, it is necessary for the
user, data base designer, or DBA, to define the meaning of orthogonal-to in
terms of data base entitics and quantitative relationships. The definition and
verification procedure is included as part of the constraint. In this example, if
two surfaces are orthogonal, then the dihedral angle between the two surfaces is
90 or 270 degrees. To verify this constraint, an appropriate geometrical
representation of surfaces and angles must be represented. If these entities and
the relevant relationships are contained in the data base, and the definition of
orthogonal-to is defined in these terms, then it is possible to verify this con-

straint.

54

A final issue for maintaining semantic constraints concerns the actions to
be taken if a constraint is violated. Conventional DBMS simply reject unac-
ceptable transactions. This approach can also be applied to incremental check-
ing by rejecting new or modified data which does not fulfill associated con-
straints. However, with retroactive checking, inconsistent data may have already
been committed. Most designers agree that in initial design phases, it is impos-
sible to maintain complete semantic consistency [Fen85). Therefore, designers
would welcome a facility which simply recognizes inconsistencies, notifies
users, and provides information about semantic violations. This method allows
users to decide what action to take next. For instance, if the dimensions of a
part are changed, the part may need re-engineering to adhere to structural re-

quirements.

Another approach for maintaining consistency uses procedural con-
straints to automatically correct the data in error. Restating the constraint
‘feed-rate = 2 (spindle-speed) (feed)’’ as ‘‘feed-rate <-- 2 (spindle-speed)
(feed)’’ helps automate constraint satisfaction. In this example, if the value of
feed-rate doesn’t adhere to the constraint equation, then the system is instructed

to compute the value using the given equation.

A third option trys to undo a transaction which caused a constraint to be
violated. Automatic backtracking requires detailed histories of data base tran-
sactions and complex dependency representations. Researchers are currently
unclear of the implications of automatic backtracking on the design process.
These considerations are being discussed in the domain of CAD/CAM DBMS
and other design environment such as architecture and electronics design. Re-

lated topics such as dependency-directed backtracking, relaxation techniques,

55

and constrzint propagation [Bor79, Ste80, Bar81] are also critical elemenis of

general purpose constraint maintenance systems.

A semantic constraint facility combined with object-oriented semantic
modeling capabilities affords powerful tools for achieving design consistency.
Tasks traditionally performed off-line by manual analysis of engineering draw-
ings can now be interleaved with the design process thereby streamlining prod-
uct development. Topics discussed in the previous paragraphs forms the basis
of the semantic constraint facility in the ODM prototype. These facilities are de-
tailed in Chapter 6. Examples in Chapter 8 demonstrate the use of semantic con-

straints to replace rules in a CAM expert system.
3.4 Heterogeneous data types

Management of heterogencous data is necessary for both conceptual cen-
tralization of CAD/CAM data and incorporating application knowledge. In
manufacturing environments, different types of data include graphical, geometr-
ical, engineering, manufacturing, and administrative data. Facilities for querying
all aspects of a manufactured product depend on modeling these heterogeneous
data types. Automated manufacturing and engineering operations have resorted
to specialized local data bases in order to maintain the different categories of
data relevant to their needs. Some data is stored in electronic data files; howev-
er, much of it resides in hard-copy reports produced manually, or is generated as
needed. Below I describe these different data types and how they are an integral

part of a manufacturing domain.,

56

Graphical data, generated during drafting and engineering design, is
mainly used for two dimensional displays and includes entities such as lines,
points, arcs, splines, and curves. Specialized CAD and drafting systems
represent graphical data using entities most suitable for displaying graphical im-
ages. The format of graphical data is determined by the two dimensional display
system and therefore obeys formats and constraints imposed by the correspond-
ing system, such as output devices and coordinate systems. In this representa-
tional approach, semantic content implied by the graphical data is lost. For ex-
ample, by viewing a display, it may be obvious that one surface is orthogonal to
another; however, it is impossible to aenive this fact by querying the graphical
data file. Many research projects developing graphics standards, such as IGES
(Ini83], GKS [Gra85]), and Core [New78), are focusing on graphical data
representation. Little work, however, has been directed toward integrating

graphical representations with other CAD/CAM data.

Geometrical data represents three dimensional topological features such
as faces, edges, and surfaces. Geometric data is used to construct a mathemati-
cal model of a part and therefore relies on mathematical representations.
Currently, most geometrical data is managed by solid modeling systems
described in section 2.2. Experts in solid modeling are starting to recognize the
need for structured organization of geometric data, and some CAD/CAM
DBMS research efforts [Ulf82b, Woo83, Ulf82a] are building their DBMS

around a2 geometric representation.

Engineering data is generated after part definition and prior to manufac-
turing. Computations such as structural and thermodynamic analyses, simulation

of motion, and material flow, produce and consume engineering data. Engineer-

57

ing data is mathematical in nature and consists of matrices, vectors, and algebra-
ic equations and formulae. Until recently, most data has been associated with a
specific engineering analysis. Each analysis program has unique requirements
for data input, therefore, a great deal of overhead results from data preprocess-
ing. Only now, as automation enters the design, engineering, and manufacturing
phases has it become imperative to maintain engineering data in an integrated

centralized data base,

Manufacturing data is least integrated into CAD/CAM DBMS. Because
manufacturing has been primarily a manual operation, there was little motiva-
tion to store the required data electronically or consider automated retrieval and
update. The advent of NC machining was a driving force toward electronic
management of manufacturing data. Progressive manufacturing firms employ-
ing DBMS for manufacturing data have usually done so in conjunction with
CAD systems for part definition and drafting. Most manufacturing data takes
the form of a procedural plan or sequence of actions. Manufacturing phases re-
quiring procedural data are process planning, tool design, fabrication, assembly,
and testing. Data for process planning tasks include machine setup
specifications and instructions for metal forming operations such as casting, cut-
ting, and forging. Tool design requires knowledge of material types and part
specifications. Machining processes use procedural data for generating NC pro-
grams and cutter path optimizations. At Lockheed, the Production Inspection
Record (PIR) is a document generated and maintained manually by process
planners at Lockheed. It consists of a sequence of detailed assembly notes for
Jjoining parts and inspecting them. The information on a PIR includes where and

when to fasten pieces of an assembly; when to inspect the assemblage, when to

58

heat treat, and what tools to prepare.

Textual data is found in all phases of CAD/CAM, from design through
marketing, however, the heaviest use of textual data is for administrative func-
tions. Managerial applications for manufacturing include production schedul-
ing, cost estimations, and quality control. Other administrative applications
such as sales, marketing, inventory control, and purchasing also require data
management systems for effective processing. Of the heterogeneous data types
discussed, administrative data is most commonly maintained by a data manage-
ment system. The data consists of alphabetic or numeric types, and data access
is based on pre-defined data paths. Because CAD/CAM administrative data
closely resembles data in commercial domains, generalized DBMS are usually
sufficient for administrative and managerial report generation, queries, and up-

dates.

To further support integration of CAD/CAM applications, it is desirable
to reference different sources of data from within 8 DBMS. Directory data is a
meta data type for referencing other CAD/CAM data. This type of data allows
symbolic pointers to auxiliary data bases or computer installations. For example,
if outdated versions of a geometric model have been archived, it should be pos-
sible to retrieve the relevant information to manually or automatically access the
off-line storage. Automatic access requires the DBMS to initiate a process for
loading or unarchiving the desired data file. Another use of directory data allows
access across different DBMS. If proper procedures are specified, retrieving data
from another DBMS can also be executed as an external process. Recent work
on the relational DBMS, Ingres, has progressed in a similar direction. Their ap-

proach supports DML commands as a data type in the DBMS. This proposal al-

59

lows Quel commands as attribute or column values which can be evaluated and

executed during DBMS processing [Sto84].

In the previous paragraphs I characterized different types of data which
are required by an integrated CAD/CAM data base system. To date there
doesn’t exist a data management system which can efficiently accommodate all
the data. Current DBMS do not have adequate facilities to maintain heterogene-
ous data. Existing commercial systems have evolved from record and file based
systems to hierarchical and network set/owner models, and most recently to flat
relational models. Given this heritage, the predominate data structure is still a
strictly typed, textual record. As a result, generalized DBMS are best suited for
applications with homogeneous, textual data. One goal of this research is to
develop methods for maintaining the heterogencous data presented above.
Chapter 6 describes facilities in the ODM prototype supporting complex and

heterogeneous data.

In this chapter, I have concentrated on four specific areas of CAD/CAM
DBMS functionality: object-oriented semantic modeling, dynamic schemata, se-
mantic constraint management, and heterogeneous data types. The capabilities
described above serve as a functional specification for a new object data model,
ODM, and a prototype implementation. In the next chapter, I lay the theoretical

groundwork for ODM by focusing on computational object-oriented models.

CHAPTER 4
OBJECT-ORIENTED MODELS

Object-oriented models have appeared under many different guises.
They have prominently evolved in the areas of programming languages, data
base management, and knowledge represeniation. Only in the past few years
have rescarchers in these areas recognized the similarities and distinguished the
differences among object-oriented paradigms. In previous chapters, I discussed
the motivation for adopting an object-oriented theory for the management of
CAD/CAM data. In this chapter I present the evolution of object-oriented
models in each of these computer science disciplines including a discussion of

unique features and limitations.
4.1 Object-oriented programming languages

Object-oriented languages are characterized by their method for structur-
ing and processing data. Class data structures are the main data type, and hierar-
chies of classes and subclasses are constructed using language primitives.
Classes are instantiated to produce specific instances of class objects. A goal of
object-oriented languages, derived from the study of data abstraction, is to
manipulate class objects as seif-contained entities or objects. Objects interact
with each other through their global instance name, providing a clean interface
between objects of similar or different classes. A class is defined by its own at-

tribute variables and also inherits attribute variables from its superclasses. Like-

61

wise, subclasses inherit procedures for manipulating instances. The internal
structure of objects, and methods for processing objects are hidden within an

object’s definition, realizing the concept of abstract data types.

Simula, developed in 1967 as an extension of Algol 60, is one of the
pioneer object-oriented languages. Facilities for maintaining class structures
and class hierarchies provide basic extensions approximating an object-oriented
language. Two of Simula’s builtin system classes are the SIMSET and SIMU-
LATION classes. SIMSET provides an implementation of sets as doubly-linked
lists, and the SIMULATION class defines process control and coroutining
[Bir73]. Even today, object-oriented programming languages are frequently

equated with simulation languages and facilities.

The successor to Simula and the purest object-oriented language is
Smalltalk [God82]. Unlike its predecessor which includes traditional data types
such as integers, reals, strings, and arrays; the only data types which Smalltalk
supports are classes and instances. Smalltalk is strictly object-oriented because
all data is accessed by unique object names. The internals of an object, namely,
its properties and processing routines, called methods, are hidden from other ob-
jects. Another way in which Smalitalk differs from Simula is its procedure or
method invocation. In Smalltalk, a message template is associated with each ob-
ject method. Instead of explicitly calling a method name to invoke a processing
routine; a message conforming to a message template is sent to an object. Re-
ceipt of a message triggers the retrieval and execution of a corresponding
method by the receiving object. All computations are performed by message
transmissions, therefore, the message-passing paradigm has come to be closely

associated with object-oriented languages. Most object-oriented languages such

62

as Flavors [Obj84], Ross [McAS8S5]), and Strobe {Smi84] employ a message-
passing form of procedure invocation. Object-oriented languages entail other
features such as overloading, late binding, and interactive interfaces [Zan86a].
These capabilities, however, further describe the functionality of an object-
oriented language; they are not requisite definitional properties such as object
identity, data abstraction, property and method inheritance, and message-

passing.

Object-oriented paradigms for programming languages are being extend-
ed to the specialized fields of simulation, logic programming, and operating sys-
tems. Object-oriented languages are particularly successful as simulation
languages because of the natural correspondence between real world objects and
program objects. Object-oriented simulation languages usually employ a clock
object for time and event management. A hierarchy or network of class objects
represents a taxonomy for describing simulation objects and their specializa-
tions, and real world processes are modeled as methods of simulation objects.
Simulations written in object-oriented languages have shown to be easier to
design and code, easier to modify, and easier for a domain analyst to understand
and critique [Kla82]. Object-oriented programming in Prolog has been pro-
posed with primitives to support objects, methods, inheritance networks, and
message-passing {Zan86b). Cola [Sno83], an object-oriented command

language for a capability-based operating system, is reviewed in Chapter 6.
4.2 Entity-based data management

In the field of data base management, objeci-oriented is usually

synonymous with entiry-oriented and is best described in contrast with the rela-

63

tional model. In relational models, data organization is based on the mathemati-
cal definition of a relation: the Cartesian product of two or more domains. A
data base relation modeling a real world situation contains a subset of the cross-
product of domain values of relevant attributes. Each element of the subset
corresponds to a relational aple. Data items or tuples are accessed primarily by
a relation name and secondarily by values for attributes within the relation. Tu-
ples in a single relation can only be distinguished by values of the composite at-
tributes. To retrieve a complete description of an entity may require accessing
many relations and selecting only the tuples whose values correspond to some

key value for the entity in question.

An entity-oriented model, however, associates a unique identifier with a
real world entity. Data retrieval is based primarily on object identity. An entity,
along with its description, attributes, and values, is accessed directly by its enti-
ty name. Once an object is accessed, attribute values and relational components

can be selected.

The Entity-Relationship (E-R) model was originally developed as a data
base design tool to model reality in terms of entities and relationships among
entities [Che76]. Although the original goal of the E-R model was to conceptu-
ally unify network, hierarchical, and relational models; the E-R model has
gained its own recognition and is the foundation for many object-oriented data
base models. The development of the E-R model combined with the introduc-
tion of Smalltalk, has contributed to object-oriented data base systems [Cop84),
an object-oriented design for distributed data bases [Web83], and an object-
oriented methodology for DBMS implementations [DeW81].

One important feature of object-oriented models, which the relational
model lacks, is the concept of complex objects. In a pure relational model, attri-
butes are single valued and tuples are accessed by the values of attributes, not by
a tuple identifier. The difficulty of representing hierarchical structures by flat
relational tables, limits the semantic power of the model. Recent attempts at ex-
tending the relational model to accommodate complex entities include RM/T
[Cod79], an extension focusing on aggregation. Extensions to two of the oldest
relational data base systems, Ingres (Sto76] and System-R [Ast80], also focus
on improved semantic expressiveness. Additions to these systems include
tuple-ids and repeating groups [Sto84,Lor82,Plo84]. With these extensions,
the relational model is migrating toward an object-oriented paradigm where
tuple-ids represent entity identifiers, and repeating groups simulate hierarchical
aspects of class/subclass structures. These and other related efforts are dis-

cussed in Chapter 7.
4.3 Schema-based knowledge representation

The study of knowledge representation has gained significance with the
emergence of artificial intelligence (AI) and expert systems rescarch. A
knowledge representation system attempts to encode domain or application
knowledge, supplying data and context for Al applications such as expert sys-
tems, natural language understanding, vision, and robotics. Most Al applica-
tions require some common sense knowledge which we as humans accumulate
through experience. For Al systems to achieve success, this common sense
knowledge must be available for computational processing. In addition to the
data maintained by conventional data base systems, knowledge base manage-

ment systems must also store and maintain knowledge about processes, goals,

65

plans, causality, time, and actions.

Many knowledge representation paradigms have been developed and
used for different Al applications. Below I have classified three schema-based
knowledge representation methodologies: semantic networks
[Fin79,Fah79, Sow84), frame representation systems [Min74,Bar81)], and
object-oriented models [Bra85]. 1 derived this characterization from my obser-
vation that each representation entails a fixed framework into which relevant
knowledge is stored. Semantics are defined for components of the framework,
or schema. These semantics prescribe how knowledge is stored, and describe in-
formation contained within the schema. In a semantic network representation,
the components are nodes and links, whose meaning must be defined. For frame
systems, the semantics of frames, slots, fillers, and the relationship between
frames must be denoted. Object-oriented models require clear specification for
the semantics of classes, class hierarchies, instances, and attributes. These
definitions must be unambiguously stated so that all knowledge is entered in a
consistent fashion, and the correspondence between the computational model
and reality is as close as possible. Knowledge representation systems not only
store facts but also include inferencing mechanisms for making deductions
based on facts and axioms. Inferencing capabilities for schema-based models re-

quire control mechanisms built to operate on the particular framework.

A modeling system which is not schema-based is a logic representation
system. For example, a logic representation derived from predicate logic does
not require a predefined schema for storing information. All data is represented
as predicatrc formulae. Based on the axiomatization of predicate calculus we

clearly understand the meaning of facts such as: father(jane, ted) or color(sky,

66

blue). Furthermore, any standard theorem proving system for predicate logic can

be applied to such a data base of facts and rules.
4.3.1 Semantic networks

In its simplest manifestation, a semantic network consists of a data struc-
ture of nodes and links. Nodes represent concepts, and links between nodes
represent associations between the concepts. Specialized inference procedures
operate on semantic networks to deduce new facts and relationships. The pre-
cise meaning of a node, and the semantics attached to a link are decisions left to
the system designer. If links represent the relationship is-a, then a taxonomic

hierarchy, like the one illustrated in Figure 4.1, is generated.

When links represent roles of a case grammar, a concept such as gives is
associated with role fillers, through role links [Sow84, Mil76). In Figure 4.2,
role links such as agent, object, and recipient are connected to nodes represent-
ing the respective role fillers: student, homework, and teacher. The resulting
network structure represents the assertion: The student gives homework to the

teacher.

Semantic nets were introduced as an intuitive notion of associations
[Qui68]. Because the idea was easy to grasp, researchers quickly adopted the
use of semantic networks for knowledge representation. During the initial
growth and development of semantic networks, people were experimenting with
different meanings for the network formalisms. Over time, the semantics of a
node/link data structure represented many different interpretations. To deduce
valid inferences from a semantic network, consistent semantics must be attached

to all nodes and links. Unfortunately, the intuitiveness of these network struc-

67

Figure 4.1 Semantic network representing a taxonomy

tures tends to obscure inconsistencies which many semantic network systems
-are guilty of [Bra83]. Rescarchers are attempting to sort out the different mean-
ings and uses of semantic network representations [Ste78,Bra78). Recent
knowledge representation efforts are addressing the meaning of node/link asso-

ciations, and formally stating the semantics they intend.

68

oo e sgexr oniegy_—+CrOUENORD
RECIPIER @

Figure 4.2 Semantic network representing an assertion

4.3.2 Frame representations

A knowledge base organized as a frame representation model views
knowledge as modular decomposable chunks of frames [Min74, Ste78]. Divid-
ing a knowledge base into frames is common in applications like computer vi-
sion and natural language understanding. A frame usually represents a prototyp-
ical organization of a concept. Slots or frame variables further describe a gener-
ic concept or object. When a frame is instantiated, its slots are filled with
pointers to other frames. Frames are combined to form situations, and imcedur—
al knowledge is attached to slots for inferencing. Frames are organized as type
or category hierarchies, similar to class hierarchies in object-oriented program-
ming languages. Like semantic networks, many variations of frame-based
languages have been developed. An example of a simple dining room frame is
illustrated in Figure 4.3.

69

LIVING ROOM FRAME
ISSA ROOM
T sora CEILING TV '
—>
T RIGHT —a——»
WALL WALL
FLOOR | DOOR —}———p

v

Figure 4.3 A frame represznting a stereotypical living room

4.3.3 Object-oriented knowledge representation

In theory, the difference between a semantic network and a frame system
is clear; however, operational systems built upon these formalisms cannot
always be strictly identified as one type or another. If a system of frames is or-
ganized as a network, is the resulting model a semantic network or a frame sys-
tem? Similarly, if nodes in a semantic network have structure with slots and

fillers, do we have a frame system?

None of these categorizations are mutually exclusive, and systems dep-

icting object-oriented models also suffer from this identity problem. Most

70

object-oriented systems also have functional qualities of frames and semantic
networks [Bra85). However, based on the preceding discussion of object-
oriented programming languages and entity-oriented data management systems,
I can now present some guidelines for characterizing object-oriented knowledge
representation systems. Often, the semantics attached to system primitives helps

classify the representation model.

The primary and underlying organization of entities in an object-oriented
model is a taxonomic structure. This view is consistent with the organization of
objects in object-oriented programming languages: subclasses are specializa-
tions of classes, and a subclass is instantiated to represent a specific instance. If
we denote objects as nodes and the is-a relationship as links, we can generate a
taxonomy network for a particular concept. The relationships between objects
in the resulting classification network represent a form of abstraction called gen-

eralization.

A taxonomic classification proves to be a key component of an inferenc-
ing method referred to as inheritance. Inheritance allows properties of objects
to be distributed across a generalization hierarchy. Properties are explicitly at-
tached to the most general concept exhibiting the property, and specializations
of the concept are said to inherit the property. It is argued that this mechanism
contributes to conceptual clarity and physical storage economy because shared

properties are not replicated wherever they apply.

Many object-oriented models are guilty of the same flaws exhibited by
semantic networks. The semantics associated with the intuitive notion of inheri-

tance are not rigorously defined. This ambiguity results in obscure notation and

71

invalid inferences. I discuss the implications of this vagueness in the next sec-
tion. Ambiguity surrounding both the is-a relationship and property inheritance
must be resolved before we can make full use of their power as valid inferenc-
ing techniques [Bra83]. Formal definitions of generalization and other abstrac-
tion mechanisms in ODM are detailed in Chapter 5.

Emphasis on concept definition and description also distinguish object-
oriented systems from other knowledge representation techniques. The primary
focus is on concepts or objects and their properties. Relationships between ob-
jects, other than generalization, are not explicitly supported. This distinction
was also addressed in the previous discussion comparing entity-based and rela-
tional data base models. Nevertheless, it is necessary to represent relationships
in an object-oriented system. By viewing the notion of giving as a concept, the
propertics of giving correspond to its roles; namely, agent, object, and recipient.
Although these concepts differ from object concepts, object-oriented models

support relationships through this approach.

During this discussion of schema-based representation techniques, it is
important to note that knowledge representation systems maintain complex and
unstructured knowledge compared to the data managed by a DBMS. Imagine
representing all the knowledge (not just the character strings) of a murder mys-
tery in a knowledge base. Posing a query such as *‘Who killed the butler?’’ re-
quires much more semantic information and inferencing capabilities than is
necessary for a DBMS query such as ‘‘What are all the projects in Department
6237’ Nevertheless, data base management systems can profit enormously from
semantic representations and inferencing techniques. Indeed, we would like

computers to understand the meaning of a book by entering its text. Similarly,

72

by entering an engineering drawing, we wish a computer system could under-
stand the components and processes required to manufacture a metal part. With
such an ambitious achievement, we could then present queries such as ‘Do the
holes in this bracket require reaming?’’ or '‘What cutter speed should be used
Jor this gasket?’'. ODM is a step toward this goal of semantic data models by

merging knowledge representation and data base management technology.
4.4 Deficiencies of object-oriented models

The proliferation of object-oriented languages has resulted in many vari-
ations of the object-oriented paradigm, each defining different terminology and
meaning [Zan86a). In part, object-oriented models have gained popularity
through their intuitive character. The notions of objects, classes, methods, and
message-passing are simple concepts to grasp yet provide substantial modeling
power. Unfortunately, the multitude of variations and intuitiveness of the con-
cepts often deter the development of formal definitions. As I discussed in the
previous section, similar phenomena occurred during the early development of
semantic networks. Frequently, the semantics of knowledge representation
languages is defined by their implementation -- not the best way to develop con-

sistent and long-lasting theories.

Object-oriented data structures are frequently described in terms of
classes, subclasses, instances, properties, and property values. Much of the ter-
minology has acquired an informal connotation, therefore, these systems rarely
offer a formal definition of their terms. As a result, inconsistencies are difficult
to detect. In this section I identify some of the issues which must be considered

when describing object-oriented representations.

73

Some ambiguity revolves around the notion of a class. Does a class (or
class object) represent the set of all objects fulfilling some qualification, or does
a class object refer to a prototypical entity with a particular description? For ex-
ample, if we define a class of cats, does the class refer to the set of all cats or a
single generic cat? If the class of cats refers to the set of all cats, then properties
describing the class will modify the set, With a set interpretation, it is sensible to
ask about the cardinality of the class or set of cats. Querying about the color or
weight of the class only makes sense if a class refers to a generic representative
of the class. If a class object refers to a set, then how and where is the descrip-
tion of the prototype retained? Conversely, if class represents a prototype with a
schematic description, how is the set or collection of instances referenced? My

rescarch has focused on developing a representation encompassing both in-

terpretations.

These issues are compounded when the is-a connective is introduced to
express relationships between classes, subclasses, and instances [Bra83]. 1t is
essential that object-oriented representations make a distinction between the
statements ‘‘<subclass> is-a <class>'’' and ‘‘<instance> is-a <class>'’. If
class and subclass are assumed to represent sets then ‘‘rabbies are cats'’ is an
instance of the first statement. This fact expresses a subset relationship interpret-
ed as “‘the set of all tabbies is a subset of the set of all cats’’. The second state-
ment, such as ‘‘Isabella is a car’’, represents the member relationship between
clements and sets. The corresponding statement, ‘‘Isabella is a member of the

set of cats’’ explicitly reflects this membership.

74

Under the assumption that class is a prototype object, the statement
“<subclass> is-a <class>'' is interpreted as follows: The description of a pro-
totypical subclass object is subsumed by the description of a prototypical class
object, as in ‘‘a tabby is a cat’’. Different semantics are intended, however, if
is-a relates an instance and class under the same prototype interpretation of
class. ‘“‘Isabella is a car’’ indicates that Isabella is an instance of a prototypical
cat where the schematic description has been replaced by real values. In each of
these cascs, the meaning of an is-a relationship depends on the type of its argu-
ments, namely instance or subclass. In ODM, I have eliminated this dependence

by defining typed relationships to reflect the correct intended semantics.

So far, discussion has focused on the semantics of class, subclass, and in-
stance. Another vital component of object-oriented representations is the pro-
perty description of an object. Most often this description takes the form of
attribute/value pairs and is the basis of a technique called property inheritance.
In its abstract form, inheritance refers to a method of implicitly distributing
attribute/value pairs from classes to subclasses and instances. For example, if
cats have whiskers and tabbies are cats, then it follows that tabbies have whisk-
ers. Furthermore, if Isabella is a tabby, she also has whiskers. The intuitive
motivation for this technique relates to the subsumption of subclass objects by
class objects and instantiation of class objects to produce instances. The class
of cats subsumes the class of tabbies; therefore, we can infer that any properties
of cats, like having whiskers, also apply to tabbies. Secondly, because Isabella
is an instantiation of the class of tabbies, she assumes the properties of tabbies
which again are inferred from the class of cats. Unfortunately, most object-

oriented systems do not define an underlying principle for prescribing the distri-

15

bution of property descriptions.

At least three variations of inheritance must be addressed [Ste78]. In the
simplest case, the value of an attribute is constant over all subclasses and in-
stances, and may be associated with the class object. This aspect of inheritance
also applies for predicates defined as properties. For instance, the predicates
has-whiskers and has-claws are true for the class of cats, therefore, they hold for
tabbies and Isabella.

A second case arises if all instances are described by the same property
but the value of the property is not constant across instances. In this situation it
may be desirable to specify a set of possible values or enforce other conditions
on the value, such as “‘color is white or blue or brown’’ or ‘‘weight is less than
5000’'. Here, class to subclass inheritance implicitly passes a description to a
subclass. However, class to instance inheritance indicates that the property is in-
stantiated with a value fulfilling the description. Although it is true that the
color of my car is ‘‘white or black or brown’’ and its weight is ‘‘less than
5000, specific values are intended for the color and weight properties of a
specific instance of the class of cars, namely, my car. The semantics of this
variant depends on the types of objects being related. Inheritance from class to

subclass differs from class to instance inheritance.

A more complicated situation must be faced when a subclass description
is more restrictive that a class description. Although the weight of all Chevrolet
cars is less than 5000, the weight of Chevette models is less than 3000. This
case necessitates a specification such that the set of possible values for a sub-

class property is a subset of allowable values for the class property. Subclasses

76

are specializations of classes, therefore, the values of a property may be more
specialized or restrictive than the same property of the superclass. In the follow-
ing chapter I present my alternatives to the informal inheritance techniques re-
viewed above.

77

CHAPTER 5
ODM: AN EXTENDED OBJECT-ORIENTED DATA MODEL

In Chapter 2, 1 discussed motivating DBMS goals relating specifically to
CAD/CAM applications. Based on these objectives, I formulated functional
specifications for CAD/CAM data management. As a result of this process, |
determined that an object-oriented representation model best fulfills the pro-
posed requirements. Next, [analyzed the strengths and weaknesses of different
aspects of object-oriented representations. I observed that three computer sci-
ence disciplines: programming languages, data management, and knowledge
representation, have directly influenced the development of object-oriented
models.

In this chapter, I first outline five representational goals concretized by
my review of object-oriented models. The next section details the achievement
of these goals ‘by presenting the theoretical specification of a new object-
oriented data model, ODM. Section 5.2 also describes how the extended capa-

bilities of ODM are superior to those of current object-oriented models.

5.1 ODM goals

The following five capabilities were driving forces in the development of
ODM. Discussion of each capability identifies its origin and refers to the

corresponding ODM feature supporting the capability.

78

¢ represent complex hierarchical data structures
¢ model semantic objects and relationships

¢ include inferencing capabilities

* provide extensional semantics

* specify well-defined semantics for model primitives

Basic theories relating to complex objects and hierarchical data types were ex-
ported from the fields of programming languages and kr.owledge representation.
Both areas have developed methodologies for complex class/instance structures,
generalization hierarchies, and emphasised the importance of information hiding
derived from the study of abstract data types. Complex object description is the

subject of section 5.2.1 discussing concept representation.

Providing rich primitives for representing semantic objects and relation-
ships has been explored primarily in knowledge representation work. Recent
DBMS efforts at specifying semantic data models for improved expressibility
have produced mathematical models, irreducible data models, semantic hierar-
chy models and direct extensions of the classical data models
[Nil80, Tsi82, Bor80]. Section 5.2.2, concept relationships, presents techniques
for extending the modeling power in ODM.

Research on inferencing mechanisms also stems from work in
knowledge representation. In most modeling applications, it is impossible to ex-
plicitly identify and represent every piece of necessary information. Deduction
systems like logic provide a formalism, ic. axioms, to declaratively extend the
knowledge of a system by applying axioms to known facts. Production rules
[Bar81,Nil80] are a formalism which procedurally infer new knowledge from

79

existing data. The types of inferences which are profitable in CAD/CAM appli-
cations and have been included in ODM, are described in section 5.2.3 address-

ing concept inferences.

Extensional semantics is a feature we take for granted in DBMS. Exten-
sional semantics refers to techniques for managing data instances; namely, the
instantiation of schema descriptions by real world objects. Requesting all tuples
in a relation or all the member records of a set owner record is a routine DBMS
operation. In programming languages, however, no such concept is built into the
languages. For example, if a new instance of a Simula class description is creat-
¢d, there are no automatic mechanisms to keep track of a pointer to the new ob-
ject. The programmer is expected to maintain instances of data structures expli-
citly within the code. In contrast, in a relational DBMS, if a new instance of a
relation is added, that tuple is remembered and becomes part of the extension of
the relation. In knowledge representation, most efforts have been directed at
understanding and specifying schemata for real world situations including no-
tions of time, belief, actions, and state transitions. A taxonomic hierarchy of ma-
terial compounds, such as Figure 4.1 illustrates, doesn’t assert that any samples
of these compounds exist, it merely provides a classification scheme in which to
store potential instances of the class. Extensional semantics in today’s
knowledge representation systems use only ad hoc techniques for instance
representations. In ODM, I have formalized extensional semantics through the

use of four concept primitives detailed in section 5.2.1.

Specifying well-defined object semantics, the purpose of the entire next
section, has been extensively addressed in programming languages and DBMS.

Formal semantics describing an object-oriented model do not provide any expli-

80

cit capabilities for modeling. Instead, well-defined semantics justifies the in-
tegrity of the modeling environment. Any inferences made by the system can be
proven by expressing the relevant facts, rules, and conclusions in the formal
definition language. Knowledge representation work has been exploring many
diverse means of capturing and storing knowledge. Until now research has been
concentrated on functionality at the expense of rigorous definitions. Researchers
are beginning to adopt a more formal perspective on the semantic issues entailed

by knowledge representation.

So far, I have discussed features of generic object-oriented models. In
the next section, I compare aspects of ODM with facilities of particular systems.
In Chapter 7, I review specific object-oriented implementations and describe
how they differ from ODM.

5.2 ODM definition

The research presented in the rest of this chapter defines the object-
oriented data model, ODM, by specifying formal semantics for its representa-
tion language. Thi: work provides a theoretical framework for the ODM proto-
type presented in Chapter 6. The formalization discussed here is based on set
theory and predicate logic and serves many purposes. First, it eliminates ambi-
guity inherent in intuitive definitions. A second benefit is afforded by the
soundness of logical inferences derived from the model’s axioms and theorems.
Finally, the behavior of the model does not rely on a computer implementation.
The result is a formal specification which can be used as a theoretical modeling

tool or operationalized by a computer software system.

81

The research presented in the rest of this chapter also investigates the in-
tegration of generalization and aggregation principles in ODM. Although
object-oriented systems are typically represented as generalization networks; my
analysis of CAD/CAM data strongly recommends aggregation hierarchies as a
compatible extension. My results have shown that integrating generalization and

aggregation in ODM promotes a unique mix of logical inferences.

The semantic formalization of the model includes definitions of object
primitives, axioms, and theorems. Section 5.2.1 introduces the object primitives
from an intuitive standpoint to provide some conceptual correspondence
between this representation system and other object-oriented representation
languages. Following this informal discussion, I define four primitive com-
ponents of the model in terms of set theory. The axioms described in section
5.2.2 are based on predicate logic and help support generalization and aggrega-
tion abstractions. Theorems, derived from the axioms, generate inferences in
the modeling domain. These theorems are presented with examples in section

523.
5.2.1 Concept representation

Before presenting formal definitions of ODM, I discuss components of
the model intuitively, through examples and analogies to other representation

systems.

Four primitive components of ODM are intensions, instances, descrip-

tions, and extensions. All concepts and objects of the modeling domain are com-

82

posed of these four components.!

An intension corresponds to a prototype concept. It refers to a generic
concept, such as an automobile or giraffe, not a specific real world instance. An
intension includes properties and value sets describing the prototype. Properties
describing an automobile might include color, weight, and wheelbase; the inten-
sion for a giraffe might contain the properties color, height, and habitar. Value
sets associated with each property represent the set of allowable values of the
property. For example, “‘{(weight {x/x < 5000})(color {red, blue, white}),
(wheelbase {x/x < 150})}'’ might represent the intension of an automobile,
where, color, weight, and wheelbase are property names. The value set denoted
by ““{x/x < 5000}'' indicates that the value of the weighr property for an auto-
mobile must be less than 5000. Similarly, the value of color must be either red,
blue, or white. In relational data base terminology, an intension corresponds to
the schema of the relation; properties correspond to schema attributes; and value
sets are similar to attribute domains. Propertics of an intension are descriptions,
not complete definitions. If two intensions have the same properties, they do not
necessarily represent the same prototype. For example, giraffes and cheetahs
both have color, height and habitat properties but are very different objects.

Intensions are not exclusive descriptions. The ‘“‘animal’’ intension sub-
sumes the ‘‘girgffe’’ intension, that is, animal properties can also describe
giraffes but not vice versa. House and vehicle also are non-exclusive intensions;
a motor home, for instance, may be described by both intensions. The model

does not place any restrictions on what constitutes an intension. If an object can

1T use the terms *‘concepr’’ and “object’’ interchangeably. Although ‘‘object’’ usually refers to
a physical entity and ‘‘concept’’ connotes an intangible entity; they are modeled identically.

83

be labeled or identified as a generic type then it can be defined as an intension.
Intensions correspond to ‘‘class’’ structures in Simula [Bir73] and Smalltalk
[God82). In the Flavors object-oriented language [Obj84], an intension is simi-
lar to a ‘flavor’’, and ‘‘instance variables'’ correspond to properties. The
NETL knowledge representation language [Fah79] refers to intensions as *‘type
nodes’’ and propertics as “‘roles’’. In KL-ONE [Bra85], intensions are analo-

gous to ‘‘generic concepts’’ and the properties are called ‘‘darers’’,

An instance represents an object in the world being modeled and is an
instantiation of an intension. The world being modeled may be a subsct of the
real world, or may be a self-contained imaginary world, such as that described
in a fictional book. In either case, an instance stands for a unique identifiable ob-
ject in that world. Whether the instance corresponds to a real world object or
not, depends on the world being modeled. For example, if we are modeling the
Los Angeles Zoo, and Juliette is a giraffe at the zoo, then Juliette is an instance
of the giraffe intension. Note that Juliette is also an instance of the animal inten-
sion. Under these assumptions, however, we cannot cite any instances of the un-
icorn intension. Instead, if we are modeling a fictitious world where unicorns
exist, instances of the unicorn intension can be identified. Flavors and Smalltalk
also refer to objects in the modeling world as ‘‘instances’’. NETL calls its in-
stances '‘individual nodes’’ and KL-ONE’s instances are ‘‘individual con-

cepts'’,

An instance refers to an identifiable object, however, the description
component associated with each instance represents the instantiated
property/value pairs of the corresponding intension. A description is derived

directly from an intension and an instance. The intension provides the proper-

84

ties, or schema, and the instance supplies the property values, or data for the
description. There is a one-to-one correspondence between instances and
descriptions. In (traditional) relational data bases there is no notion of an
identifiable instance, however, the description is analogous to tuple values in a
relation. It is incorrect to relate & tuple with an instance because tuples are
representations of sentences and instances are representations of individual ob-
Jjects. However, we can say that the instance together with its property values is
also a representation of a sentence describing the properties of the object. Furth-
ermore, tuples are identified by their attribute values, not by a unique identifier.
If two tuples in a relation are identical in attribute values, they would be indis-
tinguishable and collapsed into one tuple. If, however, two giraffes at the Los
Angeles Zoo, Juliette and Oscar, had the same values for height, weight, and ha-
bitat, they would still be two separate and unique instances. Most representation
systems do not define an explicit primitive comparable to a description. Instead,
they assign values to properties of instances, in effect, producing an instance

description.

The extension is a component representing a collection or set of in-
stances. It models the extensional semantics of objects and concepts. Each in-
tension has a corresponding extension, although, the extension may be empty if
no instances have been defined. It is important to maintain the distinction
between an extension, the set of all instances; and the intension, which
represents a prototypical object in the set. As noted earlier, many systems are
lacking this distinction or do not provide the notion of an extension at all. Fla-
vors and KL-ONE do not explicitly maintain sets of instances. NETL defines

‘‘set nodes’’ which are similar to extensions to represent the set of all objects

85

corresponding to 2 ‘‘sype node’’. The relational data base notion of an extension
is similar in that it maintains a collection of data tuples; it is different because its

data tuples are descriptions of instances, not instance objects themselves.

Figure 5.1 uses the four primitives, presented above, to describe the con-
cept of a cat and its instances. Notice that the intension provides a template for

the description, and the extension contains instances as elements.

The following discussion defines these four primitive components more

rigorously in terms of set theory.
5.2.1.1 Intensions

An intension is represented as a set of ordered pairs, where the first
member of each pair is a property name and the second member is a value set,
Properties describe a prototypical object, and value sets constrain the value of a
property. The intensions for CAT and AUTO, are expresses as follows. (As a

notational convention, all characters of an intension name are capitalized.)

CAT: ((color (grey black ,brown }), (weight {x | x < 20}), (food {purina 9-lives })}

AUTO: ((color {red ,blue white green yeliow ,brown}),
(weight {x {x <5000}), (wheelbase {x |x<150)))

In vernacular terms, the CAT intension represents an object whose color is grey,
black, or brown; weighing less than 20; which eats either purina or9-lives. Be-
cause intensions are not complete definitions, other objects may be represented

by equivalent intensions.

86

CAT AT
EXTENSION INTERSION
ISABELLA color: {grey, black, brown)
DEUTERONOMY weight: {x | x < 20}
food: {purina, 9-lives}

CAT CAT
INSTANCE DESCRIPTIDN
f
ISABELLA -———@p{ color: grey
waight: 6
food: 9-lives
CAT CAT
INSTANCE f DESCRIPTION
DEUTERONOMY > color: brown
weight: 10
food: purina

Figure 5.1 ODM primitives representing two cats

87

5.2.1.2 Instances

A constant represents an instance in the world being modeled and is the
unique identifier assigned to a specific object. The associated identifier is the
name by which an instance is accessed. In Figure 5.1, Deuteronomy and Isabel-
la are two instances of the CAT intension. Any future reference to these in-
stances is performed via their instance names. (Note that the first letter of each

word of an instance is capitalized.)

Descriptions relate instances to intensions through property values. A
description consists of a set of property/value pairs. The properties correspond
to those properties of the object intension, and the value is a member of the
property’s value set. A one-to-one mapping, denoted as ‘‘f’, is defined between

an instance and a description, and the instance name provides an explicit refer-

ence to the object.! The name, or identifier, representing an instance may be
considered as an abbreviation for a fixed collection of attribute values, some
specified in the description and some unspecified. This assumption is consistent
with an earlier statement that intensions, and therefore instances, are not com-
plete definitions. In Figure S.1, the description of the instance, Deuteronomy,
corresponds to the CAT intension where value sets are replaced with specific
values for Deuteronomy. The description of the Deuteronomy instance,

Deuteronomyp , in set notation is the following:

Deuteronomyp: {((color brown) (weight 10) (food purina)}

In ODM, a separate and unique description is generated for each instance, although in some
cases, the content of the descriptions may be equivalent. As a result of this requirement, the
function *'f** is one-10-one rather than one-to-many.

88

The mapping ‘f’ from instances to descriptions relates the instance Deutero-
nomy to its description, {(color brown) (weight 10) (food purina)}. Inversely,
for every description, D, there exists a corresponding instance. This fact is ex-
pressed by the following definition in terms of two predicates, description and

instance:

description (D) & (3x) instance (x) & f(x)=D

5.2.1.4 Extensions

Extensions are sets whose members are defined instances. The set con-
tains the collection of instances associated with a particular intension. For each
intension, there exists a corresponding extension set, although the set may by
empty if there are no instances. The extension of CAT from Figure 5.1 is ex-

pressed as:
CATg. {Deuteronomy ,Isabella)

Class objects in other object-oriented models are represented by a single
“class’’ primitive. In ODM, generic prototypes are distinguished from sets of
objects by two separate primitives, intensions and extensions. Consistent with
relational DBMS terminology, intensions characterize schemata, and extensions
denote data. Furthermore, in other representation languages, instances are atom-
ic structures denoting instantiations of a class object. ODM’s instances, instead,
combine a unique identifier, namely, the instance name, with a descriptive com-
ponent through an explicit function . Mappings from descriptions to intensions

are implicitly specified by property names, and the relationship between in-

89

stances and extensions is expressed by the set theoretic primitive *‘is-element-
of’. Although not explicitly illustrated in Figure 5.1, a close coupling exists
between the intension and extension of an object. Further discussion of relation-

ships between ODM'’s primitives are presented in the following section.
5.2.2 Concept relationships

The concept components described above are analogous to the data
structures of conventional data models. A data model further enhances its ex-
pressive power by offering facilities for relating its data structures to one anoth-
er. Based on the previous set theoretic definitions, I have augmented the con-
cept components with six primitive relationship types providing a richer model-
ing environment. In most object-oriented systems, these relationships are dis-
cussed casually and have intuitive meaning. Below I present axioms to describe

these inter- and intra-concept relationships.
5.2.2.1 Inter-concept relationships

Member expresses a relationship between instances and extensions. In-
tuitively, member identifies the extensions which an instance belongs to. The
member predicate, axiom (1), tests for the set theoretic relationship is-element-of
between an instance and an extension. In Figure 5.1
‘“‘member (Deuteronomy , CATE)'’ is true but ‘‘member(Lassie, CATg)’ is
false. Axiom (1) uses predicates instance and extension to test for instance and
extension arguments, Member(Ins E) is true if Ins 1s an instance component and

E is an extension component, and /ns is an element of E.

(1) member(ins .E) < instance (Ins) & extension(E) & Ins € E

Instantiation relates descriptions and intensions. An intension is instan-
tiated to yield the description of a specific instance. Referring to Figure 5.1, the
description of Isabella is an instantiation of a generic cat. Notice that the instan-
tiation relationship is over descriptions, not instances. However, I have defined
a one-to-one function f that maps instances to their descriptions, therefore, it is
casy to refer to the corresponding instance. Two main conditions define instan-
tiation: (a) For every property/value pair in the description, D, there must be a
corresponding property/value-set pair in the intension, INT, and (b) the value of
the property in the description must be contained in the value set of its inten-
sion. Axiom (2), below, expresses instantiation more formally. In axiom (2),
description and intension predicates verify the component types of ‘D'’ and
“INT’. Condition (a) is expressed by the implication (2.a) below, where v
represents a property value and y is a value set for property P, of intension /NT.

The second condition, expressed in (2.b), requires that value set y contains v.

(2) instantiation(D ,INT) & description (D) & intension (INT) &
V@Py)PyV)eD =

2. P, INT &
3 eneDs,

Figure 5.2 shows the same components as Figure 5.1, plus the identification of

member and instantiation mappings.
5.2.2,2 Generalization

The relationships member and inswantiation and the function f express
inter-concept mappings. Using these mappings, any component of a particular
concept may be accessed. It is not particularly interesting, however, to consider

any single concept in isolation. The hallmark of knowledge representation sys-

91

CAT
EXTENSION

CAT
INTENSION

ISABELLA color: {grey, black, brown}
DEUTERONOMY weight: { x | x <20}
food: {purina, 9-lives}
MEMBER INSTANTIATION
CAT CAT
INSTANCE DESCRIPTIDN
f
ISABELLA j————73{ color: grey
weight: 6
food: 9-lives
MEMBER
INSTANTIATION
CAT CAT
INSTANCE f DESCRIPTION
DEUTERONOMY > color: brown
weight: 10
food: purina

Figure 5.2 ODM primitives with inter-concept links

92

tems and object-oriented models is their facility for combining concepts into
complex structures to reflect real world scenarios. The following two relation-
ships express intra-concept linkages, establishing what is generally referred to as
generalization hierarchies. Generalization is a mechanism for building taxo-
nomic structures for concept classification. The principle promotes abstraction
of common properties of different concepts into a single concept. Reference to
the single unifying concept encompasses the more specialized concepts. Below
I present two relationships, subclass and specialization, for establishing general-

ization mappings between different concepts.

The subclass relationship maps extensions to extensions. One extension,

E 1, is a subclass of another, E 2, if the set of instances of E i is a subset of E 3,
(3) subclass (E 1,E 2) < extension (E 1) & extension(E2) & E1c E2

The subclass relationship, expressed in axiom (3) above, follows naturally from
the definition of member: every member of HONDAE is a member of CARg ,
therefore, HONDAE is a subset of CARg. Intuitively, the set of Hondas is
indeed a subclass of the set of cars. Subclass establishes a generalization hierar-
chy for the extension components of two concepts. The analog relationship for

intensions is the specialization mapping.

Specialization is a relation over intensions. Two aspects of an intension
are involved in a specialization relationship. The first aspect is the extent of the
intension and the second is the specificity of each property contained in the in-
tension. The extent of the intension refers to the number and type of

property/value-set pairs found in the intension. A HONDA exhibits all the pro-

93

perties of a CAR and also contains additional properties making it more special-
ized than a generic CAR, for example, the country it was imported from. In this
respect, the extent of a HONDA'’s intension covers the extent of a CAR.

The second aspect of specialization addresses individual property/value-
set pairs of intensions. For each property found in both intensions, the value set
of the property for the specialized intension is a subset of the value set of the
same property of the more general intension. For instance, the color of a car
may be black, red, blue, yellow, green, brown, or white, but the color of a Hon-
da may only be white, red, or blue. Similarly, the weight of a Honda is less than
the weight of any car in general. Although a Honda has more properties than a
car, for each property that they share, the allowable values of the property for
the Honda are more restrictive than for the car. Based on these two aspects of
specialization, a HONDA is a specialization of a CAR. The axiomatic descrip-
tion of specialization given below, (read “‘INT) is a specialization of INT2"’),
covers both extent (4.a) and specificity (4.b) of property/value-set pairs. Value

sets of the more general intension, INT 2, are denoted by v, and w represents

value sets of the specialized intension, INT 1.

(4) specialization (INT 1,INT 2) < intension (INT) & intension (INT2) &
VPV)P,w)e INT2=
(4.a) dPw)(Pw)e INT &
(4.b) wCv

Figure 5.3 illustrates the primitive components of two concepts, car and Honda.
One instance of Honda, MyHonda, is defined, and inter-concept mappings
member and instantiation are labeled. In addition, subclass and specialization

relationships are shown.

94

CARE CAR

MyHonda color: {white, red, brown, blue}
pveight: { xix < 5000 }

SUEPLASS SPEC/ALIZATION
HONDA HONDA
MyHonda color: {white, red, blue}
weight: { x|x < 3000}

imported: {Japan]

MERBER IN%TIATION
f

MyHonda color: red
weight: 2700

imported: Japan

Figure 5.3 ODM primitives with intra-concept links

Although the examples shown so far have illustrated strict generalization
hierarchies, nothing in the definition of subclass and specialization prevent an
object from having multiple parents, thereby creating a nenwork organization.
For instance, the concept of a MOTOR-HOME is a specialization of both a
HOUSE and a VEHICLE. Therefore, MOTOR-HOME inherits properties of both

generalization objects. However, axioms (3) and (4) do prevent cycles in a gen-

95

eralization network by requiring the proper subset operator *‘c’’ between inten-
sions and between value sets of intensions, rather than *‘c’’. This restriction is
consistent with the semantics we want to model, namely, if specialization(x.y)

and specialization(y,z) are true, then z cannot be a specialization of x.

5.2.2.3 Aggregation

Aggregation is an abstraction principle addressed extensively in data
base research [Myl80, Smi77], but to a lesser degree in knowledge representa-
tion. In data base theory, aggregation refers to conceptual grouping of parts into
a whole. The concept of a plane reservation is the aggregation of individual con-
cepts such as airline, flight number, departure time, seat assignment, etc. In
knowledge representation, aggregation is identified by the ‘‘is-part-of’’ relation-
ship [Fah79] in the same way that generalization informally refers to the ‘‘is-a’’
relationship. Both are considered abstraction mechanisms for constructing com-
plex structures from individual concepts. Most object-oriented systems, howev-
er, are based strictly on generalization. Object-oriented models, to date, have
not explored the use of aggregation as an alternative or additional hierarchical

organization.

In ODM, concept definition is independent of generalization. Intensions
and instances can be defined without establishing specialization or subclass rela-
tionships. Furthermore, subclass and specialization are expressed in terms of
ODM'’s concept primitives. Similarly, aggregation axioms are derived from the
set theoretic definition of concept components but are independent of concept
definition and generalization. In ODM, neither organization dominates. These

premises contrast with other object-oriented languages whose default organiza-

96

tion is generalization.

In ODM, aggregation is limited to the composition of physical (real or
imaginary) parts of an object in the world being modeled. A car is the aggrega-
tion of its immediate subparts, namely, body and engine. Engine, in turn, is the
aggregation of cylinder, piston, and crankshaft. There are two motivating rea-
sons for this limitation. First, ODM was initially designed for CAD/CAM appli-
cations where physical containment is ubiquitous. A very close analogy exists
between a Bill of Materials (BOM) hierarchy and the physical aggregation of
objects. Furthermore, BOM and parts explosion processing is an awkward task
in most data base management systems. Limiting aggregation to physical con-
tainment helps to focus on developing more natural representations for BOM
and CAD/CAM data. Second, transitivity of the is-part-of relation holds under
the assumptions of physical containment, and theorems integrating generaliza-

tion and aggregation can be proven.

Aggregation principles are based on the property ‘‘primitive-parts’’. If x
is an object, and y is a subpart of x which cannot be further decomposed, then y
is a primitive part of x. This property is the basis of the gcontains and contains
axioms described below, and in theory, can be specified as a property in object

intensions and descriptions,

Gceontains (generic contains) expresses containment between intensions.
Gceontains is derived from the following premise: If the primitive parts of y are a
subset of the primitive parts of x, then y is a (non-primitive) part of x and
geontains(x,y) is true. Figure 5.4 shows a pedagogical BOM hierarchy. In this

example, the primitive parts of a car are the leaf nodes: bolt, ring, valve, and

97

bearing. Similarly, the primitive parts of an engine are ring, valve, and bearing.
Based on the intuitive definition of primitive part and gcontains given above, an

engine is a (non-primitive) part of a car and gcontains(car, engine) is true

Figure 5.4 ODM BOM hierarchy

The primitive-parts property and comresponding value set adhere to the
same semantics as any other property, such as color. That is, a value set
represents the set of possible values for the corresponding property of an in-

stance. Value set specifications of the primitive-parts property refer to specific

98

instances of primitive subparts. In ODM, sets of specific instances are exten-
sions. Therefore, value sets for the property primitive-parts represent some com-

bination of extensions.

The specification of CAR and ENGINE intensions with primitive-parts

properties is given below, where @ represents the power set.

CAR: {(primitive-parts g (BOLTg RINGg w VALVEg U BEARINGg)} }

ENGINE: {(primitive-parts p(RINGg v VALVEg \ BEARINGg)))

The value set for CAR, corresponding to the property primitive-parts, is the
power set of the union of four extensions: BOLTE,RINGE, VALVEE, and
BEARINGE. Elements of each set in g are members of the relevant extensions.
Therefore, the primitive parts of a specific CAR is a set whose elements are in-

stances of the objects: BOLT, RING, VALVE, BEARING.

The above discussion of primitive-parts properties serves only to
motivate the definition of gcontains presented in axiom (5). 1 have demonstrat-
ed that gcontains is based on ODM notation and formalisms, already discussed
and understood. This methodology for representing physical containment ex-
tends the traditional functionality of object-oriented properties’ and values
without sacrificing the formalism of the model.

Axiom (5) states that INT | contains INT 2, if and only if /NT) and INT 2
are intensions; and, if primitive-paris is a property of INT 2 then (5.a) primitive-
parts is a property of INT 1, and (5.b) the value set w is a subset of v. Using the
CAR and ENGINE examples above, we see that primitive-parts is a property of
both intensions; and the value set of ENGINE is indeed a subset of the exten-

99

sions representing the value set of CAR. Therefore axiom (5) applies, and

geontains(CAR,ENGINE) is true.

(5) gcontains (INT 1,INT 2) & intension (INT 1) & intension (INT2) &
(3 v) (primitive —parts v) € INT2 =
(5.a2) (3w) (primitive —parts w) € INT1 &
(5.b) wcy
When a subpart is contained in more than one superpart, network struc-
tures of gconains relationships can be defined. For instance, in Figure 5.4, a

BOLT may be contained in many other assemblies. However, the definition of

gcontains in axiom (5) prevents an assertion that a bolt contains a fender.

Conuains is anzlogous to gcontains, but represents containment of in-
stances, not intensions. Because instances do not have structure of their own,
the function f maps instances to their descriptions, and containment is expressed
between descriptions. The property primitive-parts is also the foundation under-
lying the contains relationship between instances. The value of the primitive-
parts property of an instance, however, contains the names of instances of the
corresponding primitive parts. Suppose instantiation(f{Car005), CAR} and in-
stantiation(f{Engine009), ENGINE)) are true, where CAR and ENGINE are in-
tensions defined above. The descriptions of Car00S and Engine009 might be the

following:

Car00Sp: (primitive-paris {Boli00S, Ring009, ValveOO4, Bearing002})

Engine009p : (primitive-parts {Ring009, ValveO04, Bearing002})

In these descriptions, the value of primitive-parts is a set of instances. Using the

definition for primitive part, we see that the primitive parts of Engine009 are a

100

subset of the primitive parts of Car005; therefore, Car005 contains Engine009.

The formal definition of contains, axiom (6), corresponds closely to the
definition of gcontains for intensions. Although contains relates instances, and
properties are associated with descriptions; the function f supports the mapping

from instances to descriptions.

(6) contains (Ins 1,Ins2) < instance (Ins 1) & instance (Ins 2) &
@AD1)3D2) f(ns1)=D1& f(Ins2)=D2&
3 v) (primitive-parts,v)e D2=
3 w) (primitive—parts w)e D1 &
wCv

As I stated earlier, these explanations provide the basis for gcontains and
contains relationships. It is not expected that primitive-parts properties are ex-
plicitly recorded with intensions and instances. Rather, we now have a formal
definition prescribing when gcontains and contains relationships are valid.
Furthermore, although containment is expressed in terms of the property
primitive-parts, in general, inheritance of properties across composition hierar-
chies is not semantically valid and is not implied by axiom (5) or (6). Figure 5.5
illustrates a network combining instantiation with gcontains and contains. In this
diagran;, individual components of each object are not shown; only relevant in-

tensions and instances are displayed.
5.2.3 Concept inferences

Using the previous definitions and axioms, I have derived six theorems
for inferring relationships or facts not explicitly stored in a domain model. The

theorems may be regarded as declarative statements expressing new relation-

101

GCONYAINS
GCONSAINS

CAR005
INSTHMNTIATION

INSTANIATION

CONJAINS
ENGINEOO9
CONTANS INSTANTIATION
BODY0O7

Figure 5.5 Generalization and aggregation links in ODM

ships, or as procedural rules for generating new facts. Below I discuss each

theorem and outline the basis of its proof.

Theorems (7) and (8) express fransitivity over subclass and specializa-
tion. Both of these proofs follow directly from the transitivity of subser.
Although inheritance is not described in the model, I note that theorems (7) and

(8) together with axioms (1) and (2) provide the functionality of inheritance. 1

102

feel that inheritance reflects implementation issues addressing trade-offs
between storing and inferring information. Therefore, I have approached inheri-
tance as an axiomatization of underlying principles supporting the implementa-

tion trade-offs.

(7) subclass (E 1,E 2) & subclass (E 2,E 3) =
subclass (E 1,E 3)

(8) specialization (INT ,INT 2) & specialization (INT 2,INT 3) =
specialization (INT 1,INT 3)

If specialization{CAR, VEHICLE) and subclass(CARE, VEHICLEE) are com-
bined with the relationships expressed in Figure 5.3, we can use theorems (7)
and (8) to derive the new relationships shown in Figure 5.6. Only the given
facts are drawn graphically, however, six derived facts are listed below the net-
work.

A primary motivation for integrating aggregation into an object-oriented
framework is to naturally facilitate transitive closure over physical containment.
Transitive closure operations are advantageous for BOM and parts explosion
processing discussed earlier. By defining gcontains and contains in terms of the
property primitive-parts, transitivity of contains and gcontains relationships are
preserved through the transitivity of subset. If gcontains(CAR, ENGINE} is true,
ie., the primitive parts of ENGINE are a subset of the primitive parts of CAR;
and gcontains(ENGINE, PISTON) is true, then the primitive parts of PISTON
are a subset of the primitive parts of CAR; ie., gcontains(CAR, PISTON} is true.

Below, axioms (9) and (10) express transitivity over gcontains and contains re-

lationships.

103

color: red
weight: 2700

imported: Japap

Given facts:
member (MyHonda FHondag)
subclass (Hondag ,CARy)
subclass (CARE WVEHICLE;)
instantiation (MyHonda,, .HONDA)
specialization (HONDA CAR)
specialization (CAR ,VEHICLE)

Derived facts:
member (MyHonda LCARE)
member (MyHonda VEHICIE £)
subclass (HONDA E.VEHICLE)
instantiation (MyHonda ,CAR)
instantiation (MyHonda VEHICLE)
specialization (HONDA ,VEHICLE)

Figure 5.6 ODM inferences

104

(9) gcomtains (INT 1,INT 3) & gcontains (INT 2,INT 3} =
geontains (INT 1,INT 3)

(10) contains (Ins1,Ins 2) & contains (Ins2,Ins3) =
contains (Ins 1,Ins 3)

In Figure 5.4, if we view the object nodes as intensions, then the links
between nodes represent explicit gcontains relationships. By applying theorem
(9), we can generate many implicit gcontains mappings. In fact, each non-leaf
node is ‘‘gcontains’’ related to all of its descendents, For example,
geontains(CAR, x), where x represents all other nodes in the network, is true.
Similarly, gcontains(ENGINE, y) is fulfilled by any descendent of ENGINE, ie,
PISTON, VALVE, RING, CRANKSHAFT, and BEARING.

By applying theorem (10), analogous inferences are derivable for in-
stances. Notice, however, that no aggregation relationships map intensions to
instances. Because intensions are generic or prototypical objects; any subpart of
a generic object will itself be a generic object. Likewise, a specific instance
only contains instance subparts. Nevertheless, these theorems offer powerful
support for managing BOM hierarchies and transitive closure operations over

CAD/CAM schemata and data.

The theorems presented so far have not integrated aggregation and gen-
eralization. The following two rules combine gcontains with specialization to

generate containment facts. Explanation of theorems (11) and (12) is best

presented through the use of examples based on Figure 5.7.

105

(11) gcontains (INT 1,INT 2) & specialization (INT 3,INT) =
geontains (INT 3,INT 2)

(12) gcontains (INT 1,INT 2) & specialization (INT 2,NT 3) =
gcontains (INT 1,INT 3)

Figure 5.7 Integration of aggregation and generalization

'i‘he nodes in Figure 5.7 represent the intensions of four objects: CAR,
ENGINE, HONDA, and HONDA-ENGINE. Also in Figure 5.7, | have labeled
the following four explicit relationships:

geontains(CAR, ENGINE)
geontains(HONDA, HONDA-ENGINE)

specializationfHONDA, CAR)
specialization(HONDA-ENGINE, ENGINE)

106

Looking at the top three nodes of the network: CAR, ENGINE, and HONDA;
theorem (11) states that if a car contains an engine and Honda is a specialization
of a car, then a2 Honda contains an engine. The dotted link in Figure 5.8 depicts

the implied inference. Logically expressed, we have the following:

geontains(CAR ENGINE) & specialization{HONDA CAR) = gcontains(HONDA ENGINE)

GCOPHAINS

@ GCONTAINS

Figure 5.8 Inference derived from theorem (11)

SPECIALIBATION

The same fact, namely, gcontains(HONDA, ENGINE) can also be pro-
ven by focusing on the bottom three nodes of the network and applying theorem
(12), where gecontains(HONDA, HONDA-ENGINE) and
specializationfHONDA-ENGINE, ENGINE) are both true. Figure 5.9 illustrates
the nodes participating in the implication of theorem (12).

It is not possible, from the network in Figure 5.7, to prove that a car con-
tains a Honda engine. This result is compatible with an intuitive model of the

scenario presented in Figure 5.7,

107

GCONTAINS
@ o ONT HONDA

GC@NTAINS
SPECIANZATION

Figure 5.9 Inference derived from theorem (12)

Aggregation and generalization are two independently powerful abstrac-
tion techniques. Integrating them within one representation framework supports
extensions to typical BOM operations. By combining the six theorems present-
ed above, new information can be derived from previously unrelated data. Fu-
ture research should address aggregation in a more general fashion to determine
if similar logical inferences can be applied without the limitations of physical

containment,

Early in this section,] identified three advantages of formal semantics
for a representation model. First, ambiguity of definitions and terminology is el-
iminated in the presence of formal semantics. In ODM, four primitive com-
ponents and six component relationships are defined in terms of set theory and
predicate logic. Second, six theorems are derived from the model’s axioms.

Inferences generated from the theorems can be proven using the underlying

108

definitions. Finally, ODM can be used as a theoretical modeling tool. The
behavior of the model is prescribed by its formalisms and does not depend on a
computer implementation. Having fulfilled these theoretical goals, the next task
is to demonstrate the practical aspects of ODM for CAD/CAM data manage-
ment. A prototype implementation, presented in the next chapter, has been
developed for analysis and experimentation toward achieving the data manage-

ment goals presented in Chapters 2 and 3.

109

CHAPTER 6
ODM PROTOTYPE

In the preceding chapter, I discussed set theoretic foundations of ODM
in terms of intensions, instances, descriptions, and extensions. In this chapter, |
present the product of this research: an ODM prototype software system. The
prototype software I have implemented is a set of integrated computer programs
which achieve the functionality of the ODM theoretical model previously
presented. The following sections describe how the ODM software system facil-
itates heterogencous data types, semantic entities, constraint management, and
dynamic schemata. The prototype I describe below is not intended to be a
comprehensive data management system, It does not include features and capa-
bilities frequently associated with generalized DBMS, such as sophisticated
query languages and techniques for physical organization. Instead, the prototype
implementation is meant to provide an operational version of the modeling ideas
embodied in the theoretical set-oriented ODM. In addition to describing
specific prototype facilities, I compare capabilities in the ODM prototype with
analogous DBMS features. For the rest of this chapter I refer to the prototype
implementation as ‘‘ODM’'. Therefore, unless otherwise indicated, ‘‘ODM™
refers to the computer programs realizing the ODM theoretical model. Many
sample sessions interacting directly with the ODM computer prototype are
presented. In this chapter and Chapter 8, these interactive sessions are identified

as ‘‘ODM dialogues’’.

110

I start with a discussion of modeling capabilities in ODM. This section
introduces the construction of intensions and instances; and the use of generali-
zation and aggregation networks for building complex heterogeneous objects.
The next section details a data manipulation facility for creating, accessing, and
inferring schema and data information. Semantic constraint management is
described in section 6.3 followed by a presentation of the methodology underly-
ing ODM’s dynamic schema facilities. Section 6.5 concludes with implementa-

tion details.
6.1 Modeling facilities

An intension represents a conceptual entity, therefore, creating an inten-
sion defines a generic class of objects. When an intension is defined, a
corresponding extension is also built, although the extension is empty until in-
stances have been created. For discussion purposes and consistency with other
knowledge representation terminology, a class of objects refers to an ODM

component pair consisting of an extension and intension.

Once classes are defined, relationships between classes can be specified.
In the following discussion, I use a graphical representation for depicting
ODM’s objects and relationships. Ellipses denote intensions, dotted lines
between intensions represent specialization relationships and solid lines
between intensions denote gconiains mappings. For example, in Figure 6.1, I
show a network modeling ten intensions, five specialization links, and five gcon-
tains links. In this example, a 4-cylinder-engine is a specialization of an engine
and is also a subpart of a Honda. Although explicit extensions are not displayed

graphically, the extension of an object is generated automatically when the in-

111

tension is defined. The extension will be empty until instances are entered into
the model. For the remaining examples in this chapter, I refer to extensions

without displaying their explicit graphical images.
6.1.1 Generalization and aggregation

Although specialization relates intensions, and the subclass relationship
maps extensions; the concept of generalization between entities embeds both re-
lationships. In the ODM prototype, if a specialization mapping is established
between two intensions, a subclass relationship is automatically generated.
Again, to maintain consistency with other knowledge representation terminolo-
gy, creation of a subclass or generalization mapping connotes the establishment
of specialization links between intensions and subclass links between
corresponding extensions. In Figure 6.1, generalization links between vehicle
and car, and between car and cadillac imply another generalization relationship
between vehicle and cadillac. This result is based on the transitivity of generali-
zation, theorems (7) and (8). By repeated application of theorems (7) and (8),
many more generalization links are added. For simplicity and clarity, I show

only those links which have been explicitly defined.

Transitivity also holds for aggregation mappings represented as gcon-
tains relationships. In Figure 6.1, a piston is part of an engine, and a car contains
an engine; therefore, a piston is part of a car. Geontains(CAR, CRANKSHAFT),
although not shown explicitly, is implied by theorem (9). Use of theorem (11)
combines specialization and aggregation to generate the facts: gcontains(4-
CYLINDER-ENGINE, PISTON) and gcontains(4-CYLINDER-ENGINE,
CRANKSHAFT).

112

4-CYLINDER
ENGINE

Figure 6.1 ODM network

113

Primitives for integrating generalization and aggregation hierarchies are
not found in any existing DBMS or knowledge representation language. Some
projects have addressed the combination of abstraction mechanisms
[My180, Smi77], however, to date, none have included an axiomatic system for
inferencing based on these abstractions, Other CAD/CAM DBMS efforts have
recognized the need for built-in aggregation hierarchies and are considering
similar mechanisms [Smi84, Bro84]. In ODM, these facilities are the basis for

BOM hierarchies and transitive closure operations over CAD/CAM data.

In addition to subpart specification, another critical aspect of BOM data
is the quantity of a subpart contained in an assembly. Typical BOM schemata in
the relational, network, and hierarchical models include a field for subpart quan-
tity. In the following graphical descriptions, subpart quantities are expressed as
numbers associated with aggregation links. Figure 6.2 shows the BOM schema

of Figure 5.4, with subpart quantitics expressed.

I refer to Figure 6.2 as a BOM schema, however, in other DBMS
models, it best resembles a specification of data rather than schema. Compare
Figure 6.2 with Figures 3.3 through 3.7. In network, hierarchical, and relational
models, references to specific parts, ie. car, engine, and body, exist only in the
specification of data instances. In this ODM example, the distinction between
schema and data begins to vanish. The intensions shown in Figure 6.2 represent
generic objects, not specific instances. Similarly, in a CAD/CAM environment,
an engineering drawing models the generic structure of a design. The drawing is
instantiated to produce data base instances corresponding to finished products in

the specific manufacturing application being modeled.

114

Figure 6.2 ODM BOM hierarchy with subpart quantities

Instances also participate in subpart or conzains relationships. A BOM
schema hierarchy, for example Figure 6.2, may have many corresponding BOM
instance hierarchies, such as one partially shown in Figure 6.3. The contains re-
lation over instances is also transitive; however, transitivity does not hold over
the combination of intension and instance subparts. In the following figures, in-
stances are drawn as bold circles and instantiation links are depicted as bold dot-

ted lines. I have drawn instance subpart links, contains relationships, as bold

115

solid lines to differentiate them from intension subparts, denoted as regular solid
lines. In Figure 6.3, three intensions: CAR, BODY, and FENDER are instantiat-
ed. The network of regular solid links represents an aggregation hierarchy of in-
tensions; bold solid lines depict the aggregation of instances; and bold dotted
lines associate intensions with instances through instantiation links. Nodes on
the right hand side of Figure 6.3 are regarded as schema, and the left side

represents data instances.

In many knowledge representation systems, instances are created strictly
from leaf nodes of a generalization hierarchy. For example, in Figure 6.4, Clyde
and Fido are instances of the the leaf nodes, ELEPHANT and DOG. In ODM,
intensions are neither complete or exclusive, therefore, an object can be an in-
stance of any single intension. If a specific animal has been identified only as a
mammal, not an ¢lephant or dog, then the animal should be an instance of the
MAMMAL intension, a non-leaf node in Figure 6.4. With the same generaliza-
tion hierarchy, an animal named Garjfield, also known to be a cat, can only be
defined as an instance of MAMMAL (or any generalization of mammal). A
better alternative, if possible, is to first add a CAT intension and then create an
instance of CAT named Garfield. With dynamic schema facilities, discussed in
section 6.4, it is possible to dynamically and interactively add new intensions to

a data base.

In previous examples, intensions and instances are identified by a con-
ceptual correspondence between the name of an object and its counterpart in the
world being modeled. Although the intension representing the concept of a dog
is named DOG, there is no inherent meaning associated with the intension name

“DOG"’. User selected names of intensions and instances carry no predefined

116

ml!l"

o ll"' M
FENDER0O2)
BOM
FENDER003)
CAR009

BODY0D0?7
FENDEROO1
FENDERDC2

FENDER003
FENDER004)' FENDEROO4

Figure 6.3 BOM instance hierarchy

117

Figure 6.4 ODM generalization network

118

significance. Furthermore, there are no limitations preventing us from defining
an intension named FOOBAR, to represent the concept of dog. Data and
knowledge base designers, however, try to name entities mnemonically, to rein-
force a conceptual correspondence between the symbol ‘““DOG’’ and our in-

herent notion of a dog.
6.1.2 Properties

Properties are used to construct complex objects and heterogeneous data
types in ODM. Properties must be explicitly defined for intensions, but are au-
tomatically created for all instances of an intension. Any descriptional attributes
of an intension are retained with the intension as properties. Information
describing the extension of a concept, such as the number of instances, is main-
tained automatically with the extension data structure In ODM, a property is a
complex structure. Each property contains seven fixed slots which further
describe the property. One of these seven slots is the value associated with the
property. Although the slot names are fixed, the values associated with most of
the slots are set by the user. Property slots in the current ODM prototype include
p-name, p-lambda, p-proc, p-units, p-cardinality, p-description, and p-value.
Four of the seven slots (p-name, p-lambda, p-proc, p-value) are required; selec-
tion of the other three was based on their relevance to CAD/CAM applications.
Additional slots can be added for different domains. Below is an example of the

property, weight, defined for the VEHICLE intension:

119

VEHICLE
weight:
p-name: weight
p-lambda: (lambda (x) (lessp x 10000))
p-proc: {procedure 16}
p-units: pounds
p-cardinality:
p-description; *‘the weight of a vehicle™
p-value:
Only those slots which are applicable for the property, weight, are assigned
values. A summary of the slots and their use is given below:

p-name: the name of the property
p-lambda: a lambda expression constraining the value of the property
p-proc: a procedure identifier set by the system to verify allowable property values
p-units: & units identifier further describing the property
p-cardinality: an integer indicating ‘*how many'’ of this property exist
p-description: a textual description of the property
p-value: the value of the property
Two slots, p-name and p-proc, are automatically set by the system. The slot, p-

lambda, maintains a default value; however, for most properties, the user will
override the system default. Other slots are optionally set by the user. The
seven property slots described above apply to properties of an intension. In-
stances inherit properties through their description component and utilize the
slot p-value to store their specific property value. Detailed discussion and syn-

tax for setting property slots is presented in section 6.2.

The complex structure of properties enables arbitrary value constraints.
In the above example, the weight of a vehicle is constrained to less than 10,000
pounds. If a user tries to set the weight of a specific vehicle to a value greater
than 10,000, the transaction is rejected. Slots such as p-units, p-description, and

p-cardinality help improve the richness of the modeling environment by includ-

120

ing relevant supplemental information. P-units and p-cardinality are especially
useful in design and manufacturing environments where quantity and units in-
formation abounds. Other application domains may benefit from different slot

descriptors.

One motivation for constructing generalization hierarchies is the distri-
bution of properties, generally referred to as inheritance. For example, if the
property weight, is defined for the intension VEHICLE, and HONDA is a spe-
cialization of VEHICLE, then the weight property should also apply to HONDA.
Most knowledge representation languages and semantic data management sys-
tems support basic property inheritance across generalization hierarchies. ODM
offers more sophisticated forms of inheritance by allowing selective slots of pro-
perties to be inherited or reassigned. In Figure 6.1, the HONDA intension inher-
its the weight property and also inherits the slot values of the property. Howev-
er, since a Honda is a specialization of a vehicle, some of its properties are more
specialized or constrained. Although it is true that the weight of a Honda is less
than 10,000 pounds, we can be more precise in our specification of a Honda’s
weight by asserting that it is less than 3,000 pounds. ODM allows cascading of
value constraints for more precise property specification. In the previous
chapter, I referred to this aspect of specialization as the specificity of value-sets.
To further restrict the value of a Honda's weight, we merely need to reset the p-
lambda slot of the Honda’s weight property to: (lambda (x) (lessp x 3000)). 1f
the weight of any Honda instance is set to a value greater than or equal to 3,000,

the transaction is rejected. P-lambda can also be used for specifying the data
types of property values.

121

6.1.3 Relations

In addition to representing domain objects and properties, a data model-
ing environment must also accommodate domain-specific relationships. In
object-oriented data models, such as ODM, relational data is less prevalent than
entity-oriented data. Nevertheless, supporting user-defined relationships is
necessary for subsets of data which are most naturally modeled in a relational

representation.

In ODM, a generic relationship can be expressed between classes of ob-
jects and corresponds to the relation schema in relational DBMS. Instantiations
of the relationship generate unique relation instances and are similar to relation-
al aples. A class of objects participating in a relationship fulfills a particular
role of the relationship. This characterization of relations is derived from
knowledge representation formalisms based on case grammars
[Bra78,Mil76, Sow84]. In a case grammar, the main predicate of an assertion

corresponds to the relation, and nominal expressions within the assertion

represent roles.! ODM adheres to this technique by providing primitives for

defining relation objects and specifying role constraints.

A relation object is 2 special case of an intension and corresponds to a
schema description in a relational DBMS. Similarly, the structure of a role
resembles a property. Role slots, like property slots, describe and constrain in-
stantiations of the relationship. An instantiation of a relation assigns specific in-
stances of ODM objects as role values. A relation instance is analogous to a fu-

ple in an extended relational DBMS which maintains unique tuple identifiers

'In this context, ‘‘predicate’’ refers 1o the subject/predicate construction of assertions.

122

[Gut82]. For data which is primarily relation-oriented, ODM can emulate a re-
lational data model through its relation objects, roles, and role values.

To demonstrate a CAD/CAM application of the constructs presented
above, I have mapped a geometric boundary model from its conceptual structure
to an ODM representation. The B-rep model in Figure 6.5 was developed by
Lillihagen [Lil78] and is typical of many boundary representation models. Links
labeled consists-of and contains exemplify aggregation relationships. Generali-
zation hierarchies are illustrated by objects graphically enclosed within surface
and surface unit entities. Other B-rep relationships, such as has boundary curve,
succeeds, and has startpoint are also expressed. Figure 6.6 shows Lillihagen’s
B-rep model constructed in terms of ODM intensions and relationships. Rela-
tional schema are displayed as rectangles whose links point to role intensions
participating in the relationship. For each geometrical entity in Figure 6.5, a
corresponding ODM intension has been constructed. This example illustrates
the close correspondence between conceptual models, like Figure 6.5, and ODM

schema structures realizing the conceptual model.
6.1.4 Complex and heterogeneous data types

Although each geometrical entity in Figure 6.6 is displayed simply as an
intension, most entitics are themselves complex structures. For example, the
definition of POINT is composed of x, y, and z coordinates. Two different
representations of a point intension are shown in Figures 6.7 and 6.8. In these
examples, the intension names, property names, and property value
specifications are shown. The property name corresponds to the p-name slot of

the property and the value specification is an abbreviation of the p-lambda slot.

123

VOLUME

IS-BOUNDED-BY
SURFACE
PLANE SURFACE gARPED SURFACE
!
HAS-BOUNDARY-CURVE CONSISTS-OF L
4 SURFACE UNIT

CURVE <
NET OF CURVES PATCH

CONTAINS

URVE SUGCEED
SEGMENT S
. HAS-STARTPOINT

HAS-ENDPOINT

POINT

Figure 6.5 B-rep schema for solid volume

124

IS-BOUNDED-BY

HAS-BOUNDARY-CUR
NET-O
CURVES
SUCCEEDS
CURVE
___ - \SEGMENT
HAS-STARTPOINT HAS-ENDPOINT

Figure 6.6 ODM network of B-rep model

125

|

o:](q-goordinate: N
y-coordinate: N
Z-coordinate: N

Figure 6.7 POINT intension with 3 properties

INT
Pst)-y-z-cuordin.-;maes: (NNN)

Figure 6.8 POINT intension with one property

Figure 6.7 defines x, y, and z coordinates as individual properties. Each

coordinate property is required to be numeric, indicated by the *N'’ value
specification, and is accessed and set independently of the others. Figure 6.8

considers the coordinates of a point as a single property accessed by the proper-

126

ty name, x-y-z-coordinates. This alternate specification represents the coordi-
nates as a list of three¢ numeric elements, ie. ‘(6.2 4 8.655)"’. Each representa-
tion has advantages and disadvantages in terms of overhead for access and
modification. The choice of organization is a data base design issue which

should consider how the data is accessed interactively and used by applications

programs.

The intensions discussed so far have consisted of simple numeric or tex-
tual properties. The LINE-SEGMENT intension, in Figure 6.9, illustrates a com-
plex data structure whose property value-sets are intensions. A line-segment is
defined by three properties: two endpoints and a linear equation. The vertical
bar syntax, ‘‘|...|"’, specifies an intension whose instances are the allowable
values of the property. For example, the value of an endpoint must itself be an
instance of the POINT intension. The definition of line-segment is not con-
cerned about how the POINT intension is defined, ie., Figure 6.7 or Figure 6.8; it
only requires that the values assigned for its endpoints are instances of POINT.
In addition, the value of the property, equation, is constrained to be an instance
of LINEAR-EQUATION, With these definitions, the LINE-SEGMENT intension
can now be specified as a property value of other intensions, or as a role in a re-
lational schema. By assigning intensions as property values; complex hierarchi-

cal structures are constructed,

Sophisticated property specification, in addition to the modeling con-
structs previously described, support the integration of graphical, geometrical,
and manufacturing entities for constructing heterogencous data types. The gen-
eralization hierarchy and property specifications in Figure 6.10 show a schema

of fabrication data for three different types of manufacturing jobs. In Figure

127

L POt 1. | POINT |

endpoint-2: | POINT |
equation: |LINEAR-EQUATION|

Figure 6.9 LINE-SEGMENT intension

6.10, a literal value is specified as ‘'L’’, and *‘S’’ denotes any string of charac-
ters. The property, serial-numbers, requires a list whose elements are numeric;
and, annotations in the properties, cylindricality and concentricity, indicate units
information. In this example, domain specific data types, like intensions
TOOLING-PROCESS and GT-SPEC, are integrated with traditional and extend-
ed data types to generate the heterogeneous intension FABRICATION-JOB.

6.2 Data manipulation

In this section I present interactive facilities for constructing and mani-
pulating ODM representations which, until now, have been described graphical-
ly. The ODM prototype was implemented to test and evaluate the modeling
capabilities of ODM, therefore, data manipulation facilities were not a primary
consideration. Nevertheless, it was necessary to develop an Object Manipalation
Language, OML, for creating, accessing, modifying, and traversing ODM net-

works and components. In addition, OML integrates inferencing with its data

128

suoisuajul snoauabosajay xajdwo) 019 ainbiy

103dS-TWOIHLINOID! :uoSodwod-jeouiauiodd
193dS-IVIIHdVYHD| :uomsodwoo-jeandes
(3UNLVIJ-LHVE-INIHOVII J0-1s)) :uosocdwuoo-ainjea)

IViVQ-NOLLYOIHEY - LHVd-QINIHOVINI :elep-uoneduqe)
80 LHVYd-Q3INIHOV

diN ANouuaou0d

wopad N Anedaupuyio

N :SSaupunos

103dS-19-1Hvd-"WNOILVLOHI :0ads-ib
ISS300Hd-NOLLYOIHEY +-1HVd-IVNOLLYLOH| ‘elep-uoeouqe)

80 1 HVd-TWNOLLY10H
: 1SO3dS-TWIIHAYHO! :uoiisodwiod-feonded
I1SSA20U4-ONINOOL! :e1ep-008
$S300Ud-NOLLYIHEY4-TVLIN-133HS| -eep-uoneauqe;
8O- IV13N-133HS

N :pasnbas-Ayuenb
S :edk-qof
7 :wauwipedap-Guisanbal

(N :)o-ist) ‘ssaquinu-euas
SOM-NOLLYIIHEVS

129

manipulation capabilities.

ODM is implemented in a general-purpose object-oriented programming
language. Message-passing is the main technique for procedure invocation;
therefore, statements in OML consist of message transmissions, similar to the
Smalitalk language. For the initial creation of data base entities, the object-
oriented OML is exceedingly verbose. To streamline schema and data input, I
developed a simplified Object Entry Language, OEL, for entering new inten-
sions, relations, and instances. Schema and data expressed in OEL are parsed,
producing equivalent commands in the object-oriented OML, and subsequently
loaded into the ODM prototype system. For discussion of object creation and
data entry, I use the simplified OEL. Data manipulation, such as setting and re-
trieving property values, displaying an object, and traversing aggregation and
generalization hierarchies is performed in the object-oriented OML. The com-
plete syntax of OML is found in Appendix B.

For pedagogical purposes, I constructed an ODM network displayed gra-
phically in Figure 6.11. Figure 6.12 shows the OEL specification for generating
the corresponding ODM intensions and instances. Appendix C contains the
object-oriented OML syntax generated by parsing the specification in Figure

6.12. The OEL syntax for creating a new intension is given below:

(¢ <intension> |<optional-superclass>| /<optional-superpari>/
<property-1>: <value-spec-1> <opiional-units-1>
<property-2>: <value-spec-2> <oplional-units-2>

-)

To generate an instance, the following OEL syntax is used:

130

(F <insiance> |cintension>| /<oplional-superpart>!
<property-1>: <properiy-1-value>
<property-2>: <properiy-2-value>

)

The <value-spec-n> fields are necessary for entering data type and value con-
straint information. Figure 6.13 provides a list of predefined atomic and extend-
ed data types available in OEL. Any complex data structure not included in
OEL can be defined directly in the object manipulation language. A property
value specification enclosed in vertical bars restricts the value of that property to

some instance of the intension specified.

Data entry, discussed above, is only one aspect of schema and data
manipulation facilities. In ODM, data retrieval is primarily object-oriented, that
is, the primary access method is through intensions and instances. Each inten-
sion and instance is identified by a unique addressable name. In the ODM im-
plementation, this name serves as a symbolic pointer to the internal structure re-
taining information about the object. User-defined relations are special cases of
intensions; therefore, it is also possible to query relations. Navigation through
intension and instance networks, such as Figure 6.11 is performed by traversing
generalization and aggregation hierarchies. Axioms presented in Chapter 5 sup-
port queries related to specialization, generalization, subpart, superpart, and in-
stantiation. Figure 6.14 presents a sample dialogue with the ODM prototype
based on the data in Figure 6.11. In the remainder of this document, scripts of
direct interaction with the ODM software implementation arc identified as “‘di-
alogues’’. In a dialogue, the user’s input is preceded by the prompt character
‘>, and the system’s response follows on the next line. The general syntax of

OML commands is the following:

131

AUTOMOI

HONDAQ3
HONDAD
BODY
HONDAD3
ENGINE

Figure 6.11 ODM network of intensions and instances

132

{send <object> <OML-message> <message-parameter-]>

<message-parameier-2> ...

{c VEHICLE)
(c DWELLING)

{(c MOTOR-HOME |VEHICLE|)
(c MOTOR-HOME |DWELLING})

(c AUTOMOBILE |VEHICLE|)

(c HONDA |AUTOMOBILE|)
(c CADILLAC |AUTOMOBILE})

(c ENGINE /AUTOMOBILE/)

{c BODY /AUTOMOBILE/)

(c FENDER /BODY/)

{c HONDA-ENGINE IENGINE|)

(1 Motor-Home08 IMOTOR=-HOME |)

(1 Cadillac06 JCADILLAC|)

(1 Honda03 |HONDA|)

(i Honda03-Engine |HONDA~ENGINE | /Honda03/
(i Honda03-Body |BODY| /Honda03/))
(i Honda03-Fender |FENDER| /Honda03~Body/)

(1 Cadillac06~Body |BODY| /Cadillac06/)

Figure 6.12 OEL specification of ODM network

Each statement in OML is surrounded by parentheses, ‘‘(...)’’, and begins with
the keyword send. The <object> field represents the identifier of an ODM com-
ponent, such as an intension, instance, or relation name. An <OML-message>
is a string prescribing an ODM action. The <message-parameter-n> slots

depend on the OML message and provide additional relevant information for

133

)

<literal value>

value must be egual
to <literal value>

machine-type:
"HSS Drill"

|
BASIC TYPES | IRTERPRETATION | EXAMPLE
i |
! |
| |
I | value must be an integer | age: I
| |
| |
R | value must be a real | temperature: R
| l
| i
N | value must be numeric | distance: N
| |
| i
s { value must be a string | inspecticon-order: S
| i
i i
L | value must be a literal | department: L
i {
| {
| |
| |
| |

COMPLEX TYPES

|<intension>|

value must be an
instance of the named
intension

endpoint: |POINT|

{less-than: <n>)
{greater-than: <n>)

where <n> is numeric;
valus must be less or
greater than <n>

weight:
(less-than: 1000)

(one—of:
<ealement-list>)

where <element-list> is
any of the above specs;

value must conform to one|
element in <element-list>|

color:
(one-of: red blue
green white)

(list-of:
<element-spec>)

where <element-list> is
any of the above specs;
value must be a list of
any number of elements
conforming to
<slement-spec>

———— e e - —— —

inventory:
{(list-of: |HONDA|}

Figure 6.13 OEL data types

134

ODM processing.! If the string ‘‘all’’ is contained in the OML-message, transi-
tivity theorems from Chapter 5 are applied to relevant objects in the data base.
New assertions are inferred by repeated application of the theorems. For exam-
ple, in Figure 6.11, no explicit assertion relates instances, Honda.03 and
Honda-Fender.03, however, based on the transitivity of comntains, ODM infers

the subpart relationship between Honda.03 and Honda-Fender.03.

Dialogue 6.1 OML dialogue for traversing ODM networks

{(send db is-intension? AUTOMOBILE)

LI

> (send db is-intension? VEHICLE)
T

> (send VEHICLE get-specializations)
(AUTOMOBILE MOTOR-HOME)

> (send VEHICLE get-all-specializations)
(AUTOMOBILE MOTOR-HOME CADILLAC HONDA)

> (send HONDA get-specializations)
()

> (send HONDA get-generalizatjions)
(AUTOMOBILE)

> {(send HONDA get-all-generalizations)
(AUTOMOBILE VEHICLE)

> (send MOTOR-HOME get-all-generalizations)
(DWELLING VEHICLE)

> (send AUTOMOBILE get-subparts)
(BODY ENGINE)

> (send AUTOMOBILE get-all-subparts)
(BODY ENGINE FENDER)

> (send FENDER get-superparts)
(BODY)

The underlying ODM implementition lunguage is a variant of Lisp, therefore, all objects,
messages, and parameters in OML are evaluated during processing. Because ODM’s constructs

are not global, each field must be gquoted. For clarity, 1 have removed the single quotes, R
from the fields of all OML statements.

135

> (send FENDER get-all-superparts)
(BODY AUTOMOBILE}

> (send HONDA get-inastantiations)
{HONDAO03)

> (send HONDA get-all-instantiations)
(HONDA03)

> (send VEHICLE get-all-instantiations)
{CADILLACO6 HONDAO3 MOTOR-HOMEO0SB)

> (send db is-instance? Honda(3)
T

> (send db is-instance? Cadillac03)
O

> (send Honda03 get-parts)
{(HONDAO3-BODY HONDAQ3I-ENGINE)

> (send Honda03 get-all-parts)
(HONDA03-BODY HONDAO3~-ENGINE HONDAO3-FENDER)

> (send Honda03-Fender get-assemblies)
(HONDAO3-BODY)

> {send Honda03-Fender get-all-assemblies)
{HONDAO3-BODY HONDAO3)

> send Honda03 get-intenaion)
HONDA

> (send Motor-HomeO8 get-intension)
MOTOR-HOME

> (send HOTOR-HOME is-specialization? DWELLING)
SPEC.55

> (send Honda03d is~-instantiation? VEHICLE)
SPEC.58

> {(send FENDER is-subpart? VEHICLE)
(O

> (send FENDER is-subpart? AUTOMOBILE)
SUBPRT.69

> {(send BODY is-subpart? VEHICLE)
0

> (send Honda03-Body is-part? Honda03)
PART .86

> (send Honda(3-Fender is-part? Honda03-Body)

136

PART.89

> (send Honda03-Body is~part? Cadillac0é)
O

An extension is an ODM component for maintaining instances. When a
new intension is defined, a corresponding extension is created by the system.
Instances are members Of an extension and extensions are subextensions (sub-
sets) of a corresponding generalization. For example, in Figure 6.11, Honda.03
is a member of the extension of Hondas, and the extension of Hondas is a subex-
tension of the automobile extension. ODM queries and responses in Dialogue
6.2 show these relationships. In the ODM prototype, extension names are as-

signed by the system and consist of the intension name and a unique integer

[R

separated by adot, ‘. "".
Dialogue 6.2 OML dialogue querying extensions
> (send HONDA get-extension)

HONDA. 60

> (send AUTOMOBILE get-extension}
AUTOMOBILE .57

> (send FENDER get-extension)
FENDER.70

> {(aend db is—extension? HONDA)
()

> (send db is-extension? Honda.#60)
T

> (send HONDA.60 get-members)
(HONDAO3)

> (send AUTOMOBILE.57 get-members)
4]

> (send AUTOMOBILE.57 get-all-members)
{CADILLACO6 HONDAO3)

> (send Honda03 get-extension)

137

HONDA. 60

> (send Honda03 get-all-extensiona)
(HONDA .60 AUTOMOBILE.S7 VEHICLE.50)

> (send VEHICLE.S50 get—subextensions)
(ACTOMOBILE.S57 MOTOR-HOME.52)

> {(send VEHICLE.S50 get-all-subextensions)
{AUTOMOBILE.57 MOTOR-HOME.52 CADILLAC. &3 HONDA.60)

> (send Honda.60 get-superextensions)
(AUTOMOBILE.57)

> (send Honda.$60 get-all-superextensions)
(AUTOMOBILE.S?7 VEHICLE.SO)

> (send Motor-Home(8 is-member? MOTOR-HOME.52)
MEMB. 175

> (send Motor-Home(0B8 is-member? VEHICLE.50)
SUBEXTEN. 54

> (send Motor-Home08 is-member? AUTOMOBILE.57)
Q)

> (send HONDA. 60 is-subextension? VEHICLE.50)
SUBEXTEN.59

Properties and their slots also retain information about intensions and in-
stances. The object entry language, OEL, includes syntax for property
specification when an intension is defined. OEL supports value assignments for
two of four property slots: p-lambda and p-units. The other slots, p-description
and p-cardinality must be set using the object-oriented command language,
OML. New properties can be added to an intension at any time. OML syntax for
defining new properties, and setting and retrieving the value of property slots is
given below:

(send <intension> def-property <properiy-name>)

(send <intension> get-property-siot <property-name> «<slot-names)
(send <intension> sei-property-sloi <property-name> <sloi-name> <slot-value>)

The only relevant slot of an instance property is the p-value slot, therefore, set-

138

ting and retrieving p-value of an instance is an OML primitive operation.

(send <insiance> get-properiy-value <property-name>)
(send <insiance> set-property-value <properiy-name> <praperiy-value>)

Dialogue 6.3 presents a session with the ODM prototype showing examples of

property definitions, queries, and modifications.
Dialogue 6.3 OML dialogue querying properties

> (send VEHICLE def-property weight)
WEIGHT. 93

> (send VEHICLE get-properties)
(WEIGHT)

> (send MOTOR-HOME get-properties)
O

> (send MOTOR-HOME get-all-properties}
(WEIGHT)

> {send Honda03 get-all-properties)
(WEIGHT)

> (send HondaO03 is-property? weight)
WEIGHT.93

> (send Honda03 is-property? color)
Q)

> (send DWELLING def-property color)
COLOR. 94

> (send DWELLING set-property-slot color p-lambda
(lambda (x)} (memg? x (red blue
green white brown black}}})
{Procedure 20}

> (send DWELLING get-property-slot color p-lambda)
({LAMBDA (X) (MEMQ? X (QUOTE (RED BLUE GREEN
WHITE BROWN BLACK))))
> (send Motor-Home(8 get-property-slot color p-lambda)
(LAMBDA (X) (MEMQ? X (QUOTE (RED BLUE GREEN WHITE
BROWN BLACK))))

> (send Motor-Home(08 set-property-value color yellow)

139

** Error: YELLOW -~ not a legal value

> {(send Motor-Home(08 set-property-value color red)
RED

> (send Motor-Home08 get-property-value color)
RED

> (send MOTOR-HOME get-all-instances-where color red)
(MOTOR-HOMEO8)

> (send VEHICLE set-property-slot weight p-units pounds)
POUNDS

> (send VEHICLE set-property-slot weight p-description
"the weight of a vehicle")}

"the weight of a vehicle"

> (send VEHICLE set-property-slot weight p-lambda
{lambda (x) (< x 10000)))

{Procedure 21}

> (send AUTOMOBILE is-property? weight}
WEIGHT.$3

> (send AUTOMOBILE set-property-slot weight p-lambda
{lambda (x) (< x 5000)))
{Procedure 22}

> (send Motor-Home08 set-property-value weight 5000}
5000

> (aend Motor-Home(B set-property-value weight 7000)
7000

> {send Honda03 is-property? weight)
WEIGHT.99

> (send Honda03 set-property-value weight 5000)

** Error: 5000 -- not a legal value

> (send Honda03 set-property-value weight 3000)
3000

> {send Honda(Q3 get-property-value weight)
3000

> (send Motor-Home(8 get-property-value weight)
7000

140

Another facility, useful for design and manufacturing data, is retrieval of
instances based on the qualification of its property values. For example, a re-

quest for all red vehicles, is expressed by the following OML command:
(send vehicle get-all-insiances-where color red)

In this example, ODM theorems infer that every motor home, automobile, Hon-
da, and Cadillac is also a vehicle. The qualification and selection of ‘‘vehicles’’
is therefore based on derivable facts not explicitly represented. An extended ver-
sion of the above statement permits qualification over any number of properties.
The basic selection capability, excluding the inferencing mechanisms,
corresponds directly to the selection operation in relational algebra. However,
extended relational models which support complex hierarchical objects
[Plo84, Sto84], cannot recursively perform selections over hierarchically organ-
ized relations. Furthermore, with the object-oriented schema representations
described in section 6.4, it is possible to qualify over instances of any combina-
tion of intensions. In a relational model, this capability corresponds to second
order selection over relations. By viewing relational schemata as meta-data,
these facilities are now being introduced for extending the semantic modeling

power of relational models [Sto84).

The following discussion presents facilities for creating and maintaining
domain-specific relationships in ODM. Below is an example of the OEL
specification for defining the relationship “‘inside’’ between the body and en-

gine of an automobile.

141

(r inside

inner-component: |AUTOMOBILE-ENGINE)|

outer-component: |AUTOMOBILE-BODY])
ODM relations are n-ary; the number of roles, such as inner-component and
outer-component, is not limited. Roles behave similarly to properties of inten-
sions. In the above example, the role specification of inner-component, namely,
the intension AUTOMOBILE-ENGINE; limits the value of that role to an in-
stance of the AUTOMOBILE-ENGINE intension. Role specifications, however,
are not limited to intensions; any data type specification in Figure 6.13 is appli-

cable for a role value specification in a relationship.

Defining instances of a relation object utilizes the same OEL syntax as
the definition of instances of an intension. Below I define an inside relationship
between Honda-Engine.03 and Honda-Body.03.

(i inside
inner-component: Honda-Engine.03
outer-component: Hondu-Body03)
The ODM system assigns a unique relation identifier to each instance of a rela-
tion. This identification key is used for accessing specific relational instances. A
relation identifier corresponds to a wple-id, a proposed tuple component in ex-
tended relational DBMS [Lor82, Gut82]. Examples of ODM’s relational facili-

ties are demonstrated in Dialogue 6.4.

Dialogue 6.4 OML dialogue defining ODM relations

> (send db def-relation-intension inaside
inner-component cuter-component})
INSIDE

> (send inside set-argument-lambda inner-component

(lambda {(x) (memq? x (send engine
get-all-instantiations)}})

142

{Procedure 24}
> (send inside set-argument-lambda outer-component
(lambda (x)} (memyZ2 x (send body
get—-all-instantiations))))
{Procedure 25}

> (send inside def-relation-instance)
INSIDE.110

> (send inside.110 set-argument-value inner-component
Honda03-Engine)

HONDAOQ3-ENGINE

> {(send inside.l110 set-argument-value cuter-component
Cadillaco06)

** Error: CADILLACO6 -- not a legal value

> (send inside.l1lC set-argument-value outer-component
Honda03-Body)

HONDAO3-BODY

> (send inside get-arguments)
{INNER-COMPONENT OUTER-COMPONENT)

> {send inside get-~argument~lambda inner-component)
(LAMBDA {X) {(MEMQ? X (SERD (QUOTE ENGINE)
(QUOTE GET-ALL~INSTANTIATIONS))))

> (send inside get-instantiations}
(INSIDE.110)

> (send inside.110 get-argument-value inner-component)
HONDAO3-ENGINE

> (send inside.l10 get-argument-value ocuter-component)
HONDAO3-BODY

Dialogue 6.5 presents a final interactive session, based on the network of
Figure 6.11 augmented with data defined throughout this section. These addi-
tional OML statements are used for read-only access, and produce formated out-

put of ODM entity descriptions.
Dizlogue 6.5 OML dialogue displaying formated output

> (send VEHICLE show-self)

143

VEHICLE
WEIGHT

> (send VEHICLE show-self-in-detail)
VEHICLE
WEIGHT
P-DESCRIPTION: the weight of a vehicle
P-UNITS: POUNDS
P=-PROC: {Procedurs 21}
P-LAMBDA: (LAMBDA (X) (< X 10000))
P-NAME: WEIGHT

> (send Mctor-Home0O8 show-—self)
MOTOR-HOME(0S8

COLOR: RED

WEIGHT: 7000 POUNDS

> (send CADILLAC show-self)
CADILLAC

> (send MOTOR-HOME show-property color)
MOTOR-HOME
COLOR
P-PROC: {Procedure 20}
P-LAMBDA: (LAMBDA (X) (MEMQ? X (QUOTE (RED BLUE
GREEN WHITE BROWN BLACK))))
P-NAME: COLOR

> {seand HONDA show-property weight)
HONDA
WEIGHT
P-DESCRIPTION: the weight of a vehicle
P-UNITS: POUNDS
P~-PROC: {Procedure 22}
P-LAMBDA: (LAMBDA (X) (< X 5000))
P~NAME: WEIGHT

> (send Honda03 show-self)
HONDAO3
WEIGHT: 3000 POUNDS
> (send Honda03 ahow-~self~in-detail)
HONDAO3
WEIGHT: 3000 POUNDS

> (send Honda03 show-property-value weight)
3000 POUNDS

The syntax of OML is derived from a general purpose object-oriented program-
ming language. As a result, it was not fine-tuned to provide user-friendly facili-
ties for manipulating ODM objects. Although OML is a functionally complete

language, many commands are exceedingly general and verbose. Additional

144

work on data manipulation languages and user interfaces would improve the in-

teractive language capabilities of the ODM prototype.

A graphical language is another research direction for data manipulation
in ODM. Bit-map display facilities would permit data manipulation using win-
dows, menus, and pointing devices. Labeled icons and links, similar to those
presented in previous figures, would represent intensions, instances, and rela-
tionships. Research efforts by {Wel79, Eco83, Kin86, Nas78, Wel76, Ito] are ex-

perimenting with graphical interfaces for data management systems.

With interactive display facilities, users could graphically navigate
through aggregation and generalization hierarchies. Graphical operations would
correspond to those functional capabilities of OML presented above. Panning a
window would display different portions of a network. An operation like zoom-
ing would enable a user to look inside an object node to view property descrip-
tions, values, and other information. 1 envision graphical displays of modeling
domains resembling Figures 6.6 and 6.11. A graphical interface is another step
toward closing the gap between a conceptual model of an application, (fre-
quently presented graphically), and its corresponding logical model. Although
the implementation of a graphical interface was not pursued for this ODM pro-
totype, I believe it would enhance user interactivity and understandability of

schema and data objects modeled in the underlying ODM.
6.3 Semantic constraint management

Facilities for constraint maintenance have been previously introduced
under the guise of property value specification. In ODM, constraint processing

is supported by value restrictions on properties of intensions. Because an inten-

145

sion has no inherent semantics, constraints are not associated with intensions,
but rather with its corresponding properties. Semantic constraints keyed on pro-
perties and relevant slots, further extend the semantics of an intension by adding

more information to its properties.

Before discussing aspects of semantic constraints, I show how ODM
maintains typical validity and consistency constraints supported by generalized
DBMS. In previous sections, examples of validity constraints, such as value
ranges and data types were described. Figure 6.13 shows the types of validity
specifications permitted in OEL. In addition to the basic types: numeric, integer,
real, literal, string; a value can be an element of a fixed set of values; or a list of
items, where each item is an element of a set. For numerical constraints, it is
also possible to define & range of values, or upper and lower limits for property
values. The specifications shown in Figure 6.13 list only those structures and
types built into OEL. Complex heterogeneous data types can be constructed us-
ing OML.

Maintaining consistency in conventional DBMS usually refers to struc-
tural constraints on DBMS relationships. Intension, relation, and instance names
are symbolic pointers to data structures; therefore, structural inconsistencies
which occur in other data models do not arise in ODM. Existence constraints,
such as those exemplified by ‘‘child’’ data in an employee data base, are impli-
citly maintained. If an employee resigns, the employee is removed from the
data base, and the employee’s children should also be deleted. In Figure 6.14,
MarySmith, JohnSmith, and DavidSmith are instances, and therefore refer to
auxiliary data structures representing these entities. If MarySmith is deleted

from her employer’s data base, all references to her child, JohnSmith, are also

146

expunged. Deleting the data structure representing JohnSmith, is an implemen-
tation issue; however, as long as there are no other references to JohnSmith, he
is no longer part of the data base. For practical reasons, if the entity JohnSmith

cannot be accessed, it should be deleted and the storage reclaimed for other data

objects.

MarySmith
children: (JohnSmih)

JohnSmith
parents: (MarySmith DavidSmith)
yearbom: 1975

Figure 6.14 ODM parent and child instances

Symbolic pointers for ODM’s components are also advantageous for the
specification of relation types. M:N relationships are notoriously troublesome in
CODASYL network and IMS-like hierarchical models [Dat81, Car79, Enc83].
ODM, like the relational model, represents M:N relationships implicitly. The
TEACHER-STUDENT relationship in Figure 6.15 shows the relational schema
and data representing this M:N relationship. Figure 6.16 presents the
corresponding ODM relation and instance definition expressed in OEL. Roles
specified as ODM intensions, such as FACULTY-MEMBER and
REGISTERED-STUDENT, are analogous to domains of a relational model.

147

TEACHER-STUDENT (teacher, student)
where domain of "teacher™ is "FACULTY-MEMBER"
and domain of "student” is "REGISTERED-STUDENT"

teacher student

Einstein McBride
Elnstein Sheldon
Feynman Sheldon
VonNeuman McBride
VonNeuman Lohman

Figure 6.15 M:N relations in the relational model ~

In Chapter 3, I described some capabilities of a semantic constraint facil-
ity unavailable in conventional DBMS. I emphasized that semantic integrity
constraints maintain the consistency of the world being modeled, in addition to
maintaining the integrity of data instances in a computer representation. In a
CAD/CAM environment, maintaining design consistency requires design-
specific knowledge. Because data models and corresponding DBMS implemen-
tations do not include domain knowledge; they must provide data base
designers, the DBA, and data base users with tools for adding relevant

knowledge supporting semantic integrity management. In ODM, I did not

148

{ r TEACHER-STUDENT
teacher: |FACULTY~-MEMBER|
student: |REGISTERED~STUDENT]|)

(i TEACHER-STUDENT
teacher: Einstein
student: McBride)

TEACHER-STUDENT
teacher: Einstein
student: Sheldon)

-
-

TEACHER-STUDENT
teacher: Feynman
student: Sheldon)

—
-

TEACHER-STUDENT
teacher: VonNeumann
student : McBride)

—
-

{ i TEACHER-STUDENT
teacher: VonNeumann
student: Lohman}

Figure 6.16 M:N relations in ODM

develop a high-level language or interface for expressing domain knowledge in
the form of constraints; rather, [relied on OML routines augmented by pro-
cedures expressed in the underlying implementation language. These general
purpose facilities permit experimentation without limitations imposed by a par-
ticular constraint language. Through repeated experimentation and analysis of
semantic constraints in a specific domain, such as CAD/CAM, patterns of use
will emerge. Design of a user-oriented constraint language is then appropriate.

The examples discussed below, are intended to demonstrate the power of the fa-

149

cility, not the simplicity or ease of expressing constraints. An example of a se-

mantic constraint introduced earlier is the following equality:
Jeed-rate = 2 (spindle-speed) (feed)

This equation relates three properties of the intension, SHEET-METAL-
FABRICATION-PROCESS, defined below:

(c SHEET-METAL-FABRICATION-PROCESS
apit-program: §
ol: §
tool-diameier: N
feed: N ipn
culting-speed: N rpm
spindle-speed: N rpm
feed-rate: N ipm)

The following OML code assigns the p-lambda slot of the property feed-rate to

adhere to the above constraint:

{(send SHEET-METAL-FABRICATION-PROCESS set-property-slot feed-~rate
p-lambda
(lambda (x self)
{(if (and (send self get-property-value spindle-speed)
(send self get-property-value feed))
then (equal? x
{(times 2

(send szelf get-property-value spindle-speed)
{send self get-property-value feed)))))}

This lambda expression first determines if values for spindle-speed and feed
have been assigned, and if so, the constraint equation is verified. In OML com-
mands, ‘‘self’’, refers to the instance whose property is being assigned. Dialo-
gue 6.6 presents a session with the ODM system illustrating constraint enforce-
ment. In this example, self is bound to Bracker-Sheet-Metal-Fabrication-
Process, an instance of SHEET-METAL-FABRICATION-PROCESS. In Dialo-

gue 6.6, the first value assigned to feed-rate is rejected because it does not fulfill

150

the equality; the second value, 2.292, is accepted.

Dialogue 6.6 OML dialogue checking semantic constraints

> {(send Bracket-Shest-Metal-Fabrication-Process
spindle-speed 573)
573

> (send Bracket-Shest-Metal-Fabricaticn-Process
feed .002)
0.002

> (send Bracket-Sheet-Metal-Fabrication-Process
BRACKET-SHEET-METAL-FABRICATION-PROCESS
SPINDLE-SPEED: 573 RPM
FEED: 0.002 IPT

> (send Bracket-Sheet-Metal-Fabrication-Process
feed-rate 4.32)

** Error: 4.32 -- not a legal value

set-property-value

set-propsrty-value

show-self)

set-property-value

>(send Bracket-Sheet-Mstal-Fabrication-Process set-property-value

feed-rate 2.292)
2.292

> (send Bracket-Sheet-Metal-Fabrication-Process
BRACKET-SHEET-METAL-FABRICATION-PROCESS
SPINDLE-SPEED: 573 RPM
FEED: 0.002 IPT
FEED-RATE: 2.292 IPM

Verifying a semantic relationship such as, is-orthogonal-to, requires a
procedural definition of orthogonal. This definition would be the basis for p-
lambda slots of relevant properties. Although there is an initial cost for generat-

ing procedural constraint code; over time, libraries of validation procedures

show-self)

could greatly benefit design and manufacturing processes.

151

Incremenial consistency checking, one of two maintenance options dis-
cussed in section 3.3, is supported in the ODM prototype. If a constraint has
been defined and an unacceptable value is subsequently entered; the new value
is rejected. However, if the constraint illustrated in Dialogue 6.6, is changed to
feed-rate = 3 (spindle-speed) (feed), the current value (now invalid) does not
trigger a constraint violation. Only new values of feed-rate must conform to the

new constraint in effect.

Retroactive consistency checking, although computationally expensive,
is beneficial when a design is tentatively complete. If retroactive checking is
enabled, old property values, invalidated by a new constraint, trigger violation
conditions. One technique for reducing the overhead of retroactive checking is
to allow the user to control the amount of checking by specifying portions of a

generalization or aggregation network to be verified.

The types of constraints which can be expressed in the ODM prototype,
surpass those in existing DBMS and CAD/CAM data management systems. In
Chapter 8, 1 show how these constraint capabilities are utilized to encode

CAD/CAM domain knowledge.
6.4 Dynamic schema facilities

Current data management methodologies force data base designers,
DBAs, and users, to maintain a genuine separation between schema and data.
In many design environments, especially mechanical design, it is sometimes
difficult to identify whether a design represents a schema structure or data in-
stance. For example, the representation of a leading edge assembly of an aircraft

wing is an instance structure in conventional BOM data bases. The same struc-

152

ture, however, is a schema for different models and variations of aircraft wing
designs. Modeling researchers have begun to question if this separation is war-
ranted. In many knowledge representation and knowledge base management

systems, the distinction between schema and data is starting to fade.

ODM'’s dynamic schema creates and maintains schema structures in the
same way that data instances are managed. As discussed earlier, useful applica-
tions for dynamic schemata are those where the structure of the representation is
defined as the data is generated. Active schema [Mai84, Bro84), which can be
queried but not modified, benefit domains where the structure of the data is not
uniform across data instances and many different structural representations are
required. Access and retrieval facilities for schema are necessary to help locate,
define, and control data instances. Although ODM differentiates between inten-
sions and instances, the model provides capabilities for intension manipulation
analogous to those available for instance processing. In Appendix B, most OML

commands apply to both intensions and instances.

In ODM, new intensions and relationships can be added to the data base
at any time. Intensions are added independently, or as a leaf node in a generali-
zation or aggregation hiecrarchy. If a new intension is added to a generalization
network, it inherits those properties of its generalizations. If an intension is ad-
ded to an aggregation network, it becomes a subpart of any ancestors in its
aggregation hierarchy. New properties can also be added for existing intensions,
however, only subsequently created instances will recognize the new properties;
other instances assume a null value for the new property. Similarly, if property
slots are modified, only subsequent instances will conform to the new slot

values. In the rest of this section, I present an object-oriented methodology un-

153

derlying these dynamic schema capabilities.

Supporting a dynamic schema is analogous to adding an extended data
type to a large programming system. In this task, a programmer must gather
static information such as interrelationships between the new structure and ex-
isting data types. The programmer must also analyze program code to deter-
mine where and how instances of the new data type should be created and refer-
enced. These tasks are error prone because (1) data structures are not always
described properly and consistently and (2) all occurrences and interrelation-
ships with other portions of the code are not always recognized. Many factors
cause these deficiencies including: the size of the programming system, lack of
documentation, the complex nature of structures and relationships, and a poten-
tially large amount of program code which will be effected. This scenario
closely resembles the modification of a conventional DBMS data dictionary.
Both environments lack a critical tool: a system for managing information about
data structures. Instead of requiring the user, ie., programmer or DBA, to manu-
ally maintain data structure representations, we should instead supply the system
with knowledge about its representations, and let the system use this knowledge
to construct and manage the representations. For ODM dynamic schema, a
meta-data management system utilizes this information for adding new schema
entities such as: intensions, relation schemata, and properties. Notice that
operations on meta-data closely correspond to DML (data manipulation

language) facilities available for processing instance data.

ODM is implemented in an object-oriented programming language;
therefore, I constructed objects representing ODM'’s primitive entities, such as

entitics named ‘‘intension’’, ‘‘relation’’, and “‘instance’’ . Figure 6.17 shows the

154

generalization hierarchy representing these generic objects. Two main entities
are object and relation. A relation includes both the builtin relationships such as
subpart and specialization; and user defined relationships. Knowledge incor-
porated in this network takes the form of messages and corresponding methods.
Upon receipt of a message, an entity responds according to the method
prescribed by the transmitted message. 1 have incorporated into QDM primi-
tives, knowledge about how they should respond to messages sent by an ODM
user. Therefore, defining a new intension in ODM, such as VEHICLE,
corresponds to adding a new instance, named VEHICLE 10 the generic entity,
intension. Each ODM entity in Figure 6.17 has methods for maintaining the
structure of its instances. For example, the VEHICLE entity, retains its own
data base consisting of information such as: the relationships it has with other
entities; a list of its own ODM instances, ie. Vehicle.01, Vehicle.02; the proper-
ties which are associated with it; and bookkeeping information. If a user adds a
new property to an intension, such as adding interior-size to the VEHICLE in-
tension; the underlying management system knows which intensions are special-
izations of VEHICLE and therefore are affected. Relevant methods modify the
instances of VEHICLE accordingly. OML. comumands which query an intension
object, do so by retrieving its corresponding ODM instance and recalling its at-
tributes. This mera-level data management system maintains the organization of

those structures normally regarded as schema or meta-data representations.

Three instances of related work in the fields of operating systems, expert
systems, and DBMS implementation utilize an object-oriented representation
for maintaining meta-data about a computational task. In [Sno83], Snodgrass

describes Cola, an object-oriented command language for a capability-based

155

operating system. Cola was designed to effect a correspondence between capa-
bilities in the operating system, and objects supported by the command
language. Cola, based on Smalltalk, uses standard message-passing as a control
mechanism and its objects are arranged hierarchically for responding to operat-

ing systems commands.

Davis [Dav78) adopts a similar approach in his work on knowledge ac-
quisition in rule-based systems. He uses a taxonomic organization to maintain
knowledge about representations for expert system construction and mainte-
nance. Davis cites two major contributions of a generalization hierarchy for
meta-data management. First, the hierarchy presents a global organization of
representations in the system and offers a convenient overview of them. Second,
the system uses this information as a tool, allowing an expert to teach an expert

system about new instances of conceptual primitives.

An object-oriented approach to database system implementation is ad-
dressed by Baroody and DeWitt [DeW81]. Their object-oriented representation
encapsulates correspondences between data base entities and relationships. They
have demonstrated that the object-oriented approach has advantages of data in-
dependence, run-time efficiency, and support for low-level views. Each of these
systems, including ODM, benefits from an object-oriented architecture by
embedding knowledge about representations and relationships for automatically

maintaining meta-level structural information.

157

6.5 ODM prototype implementation

ODM is implemented in the T programming language [P:ee82]. Tisa
lexically scoped dialect of Lisp, developed at Yale University and used by the
Yale Cognitive Science research group. The ODM software system currently
operates on two hardware configurations in UCLA’s Computer Science Depart-
ment: the CECS (Center for Experimental Computer Science) Locus network of
Vax hardware and a network of Apollo workstations. In addition, the prototype

software has been ported to other hardware supporting the T language.

I adopted a layer approach for the ODM prototype implementation. Fig-
ure 6.18 shows the hierarchical nature of the software subsystems. Teebert, the
bottom layer, is a general-purpose object-oriented programming language which
I implemented in T. Tecbert is a subset of Ross and Bert [McA85], object-
oriented simulation languages developed at The Rand Corporation. Teebert’s
message-passing form of procedure invocation resembles facilities in Flavors
[Obj84), Strobe [Smi84], and Smalltalk [God82]. ODM'’s processing routines
are implemented in Teebert and classes in Teebert correspond to ODM primi-
tives. These classes form the basis of the schema management facilities dis-
cussed in the preceding section. Using Teebert, I constructed the higher-level
language, OML. As I have shown in previous examples, OML commands
manipulate domain-specific objects and relationships in ODM. The complete

OML syntax is found in Appendix B.

OEL, an object entry specification language, is an independent software
module whose input is a list of new intensions, reiations, and instances. Parsing

OEL input produces equivalent OML language statements which are subse-

158

model

manipulation

language
object
entry
language \OEL [/

OML
(object manipulation
language)
TEEBERT

(a general purpose object-
oriented programming language)

graphical
manipulation
language

T

Figure 6.18 ODM software architecture

quently entered as OML commands. Examples of OEL input were presented in

Figure 6.12. OEL is used stricdy for data entry, including creation of inten-

sions, relations, and instances. As an extension to the current ODM prototype, I

propose two additional user interfaces. First, a model manipulation language

specifically suited for manipulating ODM entities. Before such a language is

designed, however, research should be conducted to determine which interactive

language facilities are most beneficial. I also recommend a two-dimensional

user interface for graphically interacting with data entities. As I discussed ear-

lier, a graphical language and two-dimensional displays, comrespond most

159

closely to the data base design process and promote a better understanding of

objects and relationships being represented.

Data and program abstraction were the main motivations for utilizing a
layer approach. Each level in the hierarchy of Figure 6.18 hides lower level de-
tails through its independent language for communication with higher layers.
For example, the implementation of Teebert uses vectors for storing properties
of objects. Converting to a different data structuring mechanism, such as associ-
ation lists, only requires modification to Teebert’s creation and access functions
to manipulate association lists instead of vectors. Because ODM functions are
written in Teebert, no changes to the ODM system code are required for shifting
from vectors to association lists. Similarly, if a Lisp implementation is desired,
it is only necessary to replace T syntax with Lisp syntax in the Teebert
lal{guage. None of the higher layers use T directly; instead, they communicate
in Teebert.

The ODM software system operationalizes four desirable data manage-
ment functions presented in Chapter 3. Although this implementation is neither
fast enough nor robust enough to be considered a true prototype, both of these
problems could be overcome if the system were reimplemented. In Chapter 8, 1
cvaluate ODM's performance for achieving the objectives of integrated

CAD/CAM data management.

160

CHAPTER 7
REVIEW OF CAD/CAM DBMS PROJECTS

Many efforts are underway for developing DBMS better suited to the
management of CAD/CAM data. The focus of these projects depends heavily on
whether the work is sponsored by corporate or research funds. In this chapter, I
identify successful projects in each sector which have the greatest potential for

industry acceptance.
7.1 Corporate CAD/CAM DBMS projects

Corporate endeavors are mainly directed toward one aspect of conceptu-
al centralization: the integration of application data and subsystems. Many pro-
gressive industries are already using CAD/CAM tools for design, manufactur-
ing, and assembly. They are recognizing the detrimental effects of many self-
contained, independent data bases requiring specialized data input and output.
Other corporations are seeing a multitude of data files being generated and ex-
periencing a loss of control over the data. Major industrial CAD/CAM DBMS
efforts are generally long-term projects, estimated to require between 10 and 15
years. The mandate for most of these projects is to develop an operational in-
tegrated DBMS system and adhere to a plan for converting to the new system.
Because of the duration of these projects and the expensive conversion efforts
involved, most systems being designed are extensions or variations of conven-

tional DBMS.

161

An integrated information system at Ingersol Milling Machine [Hes83)
is hailed as a great success from manufacturers within and outside the corpora-
tion. Their information systems were rewritten to support the installation of a
company-wide integrated management and business information system,
MIS/BIS, based on IDMS [IDM]. They have cited a reduction in design staff
maintenance effort from 57% to 18% of their time. Although their MIS/BIS
system contains data for master scheduling, inventory control, purchasing and
accounts payable, it does not include engineering design and parts manufacture
data, which are generated and maintained by the graphical subsystems. Al-
phanumeric output from graphics systems is fed indirectly into the MIS/BIS sys-

tem.

At Boeing, a major effort in progress aims to produce the Boeing Com-
puting Support System (BCSS) [BCS83). Streamlining CAD/CAM product
definition and fabrication processing is the main corporate objective of the pro-
ject. Data management goals are (1) to provide a common data management
and networking facility for all Boeing applications and (2) to integrate the
graphics workstation environment and large-scale company database. This pro-
gram has been in the planning stages since 1980, and it is projected that imple-
mentation and conversion will be completed in 1995. BCSS will integrate prod-
uct definition data, such as two-dimensional and three-dimensional geometry;
product properties; bill of material information; job and process specifications;

tool definition; and inspection and testing sub-systems.

Tornado [Ulf82a) is a DBMS developed in Norway at the Central Insti-
tute for Industrial Research. The first version of Tornado was developed in 1978

to fulfill application requirements of Autokon, the world’s most popular ship

162

design system. Tornado, installed at about 20 sites in Europe and the United
States, is a CODASYL-like network system especially suitable for complex net-
work data structures. Current work is focused on integrating Tornado with
GPM (Geometric Product Model), a CAD project developing a solid modeling
system for sculptured surfaces.

Because corporate manufacturing centers cannot interrupt normal activi-
ties to spend years researching and experimenting; their efforts, naturally, are
more conservative. Their goal is to make effective use of existing data manage-
ment tools, and focus on the integration of data and applications as a key to in-
creased productivity. 1 devote the rest of this chapter to research efforts in the
area of CAD/CAM data management systems and generalized DBMS. The pro-
jects I discuss below are not burdened by the totality of design, development,
implementation, and conversion efforts required in private industry. Therefore,

these projects are dedicated to a number of interesting DBMS challenges.
7.2 CAD/CAM DBMS research efforts

The entity or object-oriented model of data organization has gained gen-
ecral acceptance for CAD, CAM, and engineering data base applications [Bro84)].
Unfortunately, this organization is orthogonal to the relational model, popular in
recent years due to its simple table structures and data independence. Accor-
dingly, major efforts at Berkeley and IBM San Jose have addressed the
deficiencies of the relational model for representing object-oriented data. Both
groups are developing extensions to their respective systems, Ingres and System

R, to accommodate object-oriented data.

163

At IBM, Plouffe et al. [Plo84), have proposed two extensions to System
R supporting object-oriented engineering and design: complex objects and long
fields. Complex objects represent object hierarchies in a relational format. A
complex object is a hierarchical cluster of tuples that comprise a single root tu-
ple defining an object, and one or more dependent tuples describing the object.
This extension entails the use of two reserved column types, IDENTIFIER, for
uniquely identifying tuples; and COMPONENT-OF, to indicate which tuples are
related. Although the hierarchical nature of objects is captured in this fashion,
complex objects are limited to strict hierarchies; networks of tuples are not al-
lowed. In practice, this restriction severly affects inventory and BOM applica-
tions where a detailed part is a component of many assemblies. System R’s
long fields are a special kind of heterogeneous data type. This extended feature
supports physical storage and retrieval of long unformated items such as raster
images or large matrices, but does not specifically address graphical or geometr-
ical data.

Ingres extensions [Sto84] also fulfill the need for hierarchies of complex
objects. The approach taken by Stonebraker et al. is to consider a complex ob-
ject as a collection of tuples which is materialized during query processing. This
approach supports commands in the query language as a data type in the DBMS.
Another Ingres extension includes a transitive closure operator which can be ap-
pended to specific query operators. This operator concatenation indicates that
the operation should be continued as long as new tuples are generated; thereby,
simulating a transitive closure generator. Although the functionality of new
Ingres and System R features is desirable, these techniques only partially

camouflage the underlying relational structure. They widen, rather than reduce,

164

the gap between logical and conceptual models of CAD/CAM applications.

CAD/CAM DBMS researchers at CCA (Computer Corporation of
America) cite aspects of concepiual centralization as their main goal [Bro84).
Components of their CAD/CAM DBMS (CCDBMS) architecture contributing
to conceptual centralization are (1) a user interface to provide uniform access to
all CCDBMS facilities, (2) a global data manager to handle distributed process-
ing, and (3) a global view of all data needed for queries, distributed processing,
and configuration mangement. CCDBMS uses the functional data model Daplex
[Shi81] which provides high-level set-oriented operations, permits modeling of
complex objects, and supports is-a hierarchies. The conceptual model under
development consists of information about parts and related documents, such as
drawings, specifications, and change notices. Extensions to this model are also
being investigated to include manufacturing data, for instance, group technology
and process planning data; and analysis data such as finite element models.
They have considered adding special facilities for transitive closure operations,
currently a complicated Daplex procedure. Additional extensions may include
parts hierarchies for robust BOM processing, and long term plans address the

definition, update, and browsing of local and global schemata.

Development of the Semantic Association Model, SAM¥*, is in progress
at the University of Florida [Su86). SAM* focuses on CAD/CAM applications
and has identified some of the same weaknesses and proposed similar func-
tionality as my research on ODM. However, Su has achieved these objectives
using different strategies. SAM* is based on a semantic network model and
recognizes seven distinguished relationships or associations between objects or

nodes in a network. Below I outline five of the associations which are relevant

165

to modeling CAD/CAM data. Although Su references nodes and node clusters
as objects and entities, SAM* is not object-oriented. Few facilities identify or
access clusters of nodes comprising an object. Emphasis is placed on the follow-
ing associations. Membership denotes the set theoretic relationship is-element-
of discussed in Chapter 5. A second SAM* relationship, aggregation is based
on {Smi77] and is used to construct entities by aggregating sets of attributes. In
object-oriented terminology, this interpretation of aggregation refers to the
object/property structure of entities. Generalization relationships in SAM* al-
low nodes to be grouped together to form a more general concept node, facilitat-
ing attribute inheritance. Although the association called composition theoreti-
cally reflects the ‘‘contains’’ relationship; the semantics of composition associa-
tions does not include BOM composition hierarchies. Instead, Su uses this asso-
ciation for version control and to relate multiple data files comprising an entire
data base. Inseraction associations relate to domain relationships and are
viewed as relationship sets similar to Chen’s E-R model. Facilities for
representing and validating semantic constraints is one obvious omission is the

SAM* model.

Many efforts have addressed data base management in other design
domains, such as electronics and architecture. In general, methodologies for
VLSI (Very Large Scale Integration), PCB (Printed Circuit Board), and PWB
(Printed Wiring Board) design are better defined than mechanical engineering
and manufacturing methodologies. Building blocks for electronics products and
corresponding composition rules are more uniform and fixed than features of a
manufactured part or mechanical assembly. However, Katz [Kat85] still

describes clectronics design as a ‘‘tentative and iterative ... process’’ requiring

166

hierarchical object organizations and dynamic schemata. At the University of
Southern Califomia, an object-oriented approach for VLSI/CAD, 3DIS, focuses
directly on VLSI design methodology (Afs85). Afsarmanesh et al. have extend-
ed a VLSI design environment to capture the underlying semantics of circuit
structure and behavior. This methodology and the accompanying environment
supports the view that design engineers, who are normally not data base experts,
nevertheless become designers, manipulators, and evolvers of their data bases.
3DIS incorporates a geometric model and supports entities, events, operations,
and descriptions of meta-data as objects. The VHSIC (Very High Speed In-
tegrated Circuits) program supported by the US Department of Defense is out-
lining specifications for a VHDL (VHSIC hardware description language).
These efforts are also trying to promote integration of electronic design and data
management. Eastman [Eas78] discusses data base capabilities in general
design activities but notes that manufacturing applications in the areas of air-
craft, spacecraft, and shipbuilding differ from electronics design in the customi-
zation of a major assembly. In architecture applications, he emphasizes the need
for many levels of consistency constraints. Eastman proposes an entity-oriented
organization characterized by spatial and composition hierarchies. These hierar-
chies combined with aggregation abstractions aid in sophisticated semantic in-

tegrity maintenance.

The systems and projects discussed so far, focus directly on the manage-
ment of CAD, CAM, or engineering data. Many of the CAD/CAM DBMS
goals, similar to those presented in Chapter 2, were formulated by an analysis of
the application domain. However, generalized DBMS and data management

models are also being influenced by Artificial Intelligence (AI), specifically

167

knowledge representation. Al researchers are discovering that DBMS based on
existing data models, do not have sufficient functionality for maintaining Al ap-
plications data. Work on Knowledge Base Management Systems (KBMS) is be-
ginning to address some of these limitations. The dynamic and semantic nature
of CAD/CAM data requires capabilities very similar to those of KBMS. Below 1
discuss KBMS work related to semantic representations, dynamic schemata, and

semantic constraint management.

Smalltalk is the basis of a set theoretic data model developed by
[Cop84). This work demonstrates how features of Smalltalk, such as operation-
al semantics, type hierarchies, and entity identity, solve many problems which
arise when using commercial DBMS for managing Al application data. Sem-
base, derived from a semantic model [Kin86], has shown that semantic model-
ing can be transformed from an abstract design tool into an effective data
management tool. King cites three advantages of semantic models over
hierarchical, network, and relational models. First, a data base can be viewed as
a collection of abstract objects, instead of a set of flat tables or files. Second,
aggregation and generalization can be built into the model, and third, a semantic
schema more easily captures integrity constraints. Once the schema dictionary is
constructed, Sembase’s dictionary facility provides operators for perusing a

schema but not modifying it.

Research on active and dynamic schema facilitics is addressed by those
working on data dictionary systems. Although there has been great promise in
the data dictionary as a tool for managing information resources; in practice,
data dictionaries have failed to achieve that promise. Curtice [Cur81] predicts

that data dictionaries will be undergoing major change during the years to come.

168

He expects that eventually there will be no distinction between the DBMS and
the data dictionary. The Database Directions I1I Workshop report [Gof82]
recommends that future data dictionaries offer facilities to (1) make meta-data
more accessible to users, and (2) allow meta-data to be queried and manipulated
in the same manner as application data, Some relational systems treat meta-data
and data equally, and relational operations produce meta-data as well as data.
But meta-data in network and hierarchical systems is quite limited. With the
notable exception of SPIRES [Sch75), most other systems that support a rich
varicty of meta-data do so with separate and less flexible facilities. McCarthy
[McC82] has found that scientific and statistical data bases share the need for in-
tegrated meta-data management. He has proposed four general goals of meta-
data management: integration, siandardization, simplicity, and extensibility.
Data base designers, administrators, and users should be able to add new types
and structures of meta-data; and add and revise meta-data values quickly and

casily, without needing to reload or redefine existing structures.

Accurate modeling of an application often involves constraints beyond
those captured by conventional schemata. Semantic constraints define consisten-
cy by capturing the behavior of the application. The approach taken by Mor-
genstern [Mor86] is based on construint equations. A declarative language
expresses invariant relationships which must hold among specified data objects.
Declarative constraint equations have an executable interpretation; they can be
compiled directly into routines for automatic maintenance of the constraints.
This approach contrasts with writing procedural code for maintaining the con-
straints. Shepard and Kerschberg [She84] have developed a knowledge base

management system, PRISM, for semantic integrity specification and enforce-

169

ment in data base systems. PRISM employs a rule-based constraint language,
CL. A constraint specified in CL is a collection of rules where each rule consists
of a precondition, action, and postcondition sequence. Within ¢ach precondition
and postcondition, predicates are combined with logical operators AND, OR,
NOT and parentheses. To determine whether a constraint is satisfied, its logical
value is computed to TRUE, FALSE, UNKNOWN, or EXCEPTION. In both of
these systems, constraints are viewed as independent entities of the data
management system instead of being associated with particular objects or attri-
butes. Other projects offer constraint primitives within the data model represen-
tation [Ham81] or utilize semantic nets and attached procedures [Myl80] for se-

mantic constraint rnanagement.

In Figure 7.1, I present a summary of the projects discussed in this
chapter. In this summary I consider systems focusing primarily on CAD/CAM
DBMS facilities. For instance, electronic CAD DBMS, such as work by Katz
and McLeod, are not included. Also, generalized DBMS or KBMS, such as
Shepard’s PRISM system, are not listed. For any specific system, the capabili-
ties indicated are those currently in design or development phases. Although
CCA cites future plans to add aggregation hierarchies, that feature is not a pri-
mary goal. Also, in some systems, only specialized versions of a capability are
supported. For example, System R’s extensions support long data items, howev-

er, a general facility for heterogeneous data types is not available.

170

. S T G M e e o — o e R R M e A e e e s T e m— e e e T e w. e —

sjoaloid SWAA Wy /avD Jo Alewwng |2 ainbiy

RIomrau

¥Iomlau |Teucyieial|eucyielal|

|
)

|
[

ieat

YICAIBU | lePUOTIOUN] | -ydIRIATY

PEGLEETH

paiuario
-30alqo

[apow
1ea1boy

pajuatio
-312a{qo

yI1omiau
DT IUrWaS

| TeucyIP[aT | [PUOTIP[3T]

yI10m13Y

{paijuatio

-303fge

uotileral
-K113U8

yiomiau

suotietal
4ii= 0-0

[apow
1enidasuos

| i

X

PWIYDS
siweudp

SIUTRPIISUOD
S1IUPWaS

suotjezado ainsold
PATITSURI]

saTyoazearaty
uotiebaibbe

uojjezyTeIauab

sy0afqo (eojyIe
-131y ‘xardwod

sadk1 evaep
snoauaboiailey

ejep *bju pue ‘ubysap
a1133w0ab ‘Teoqydesb
30 uotieibajuy

urwise3
30119

e —— e — —— — M — S — v — W Ve —

ns
WS

81307
¥ W3ISAS

ixeiqauols

i
|
i
|
]
i
|
]
[
]
]
]
|
|
i
I
|
i
!
|
I
|
|
I
!
I
!
STYONI |
I

I
!
|
I
I
!
t
!
I
!
|
I
!
|
!
|
I
|
|
!
|
i
!
]
|
|
I
]
l

¥IID
opeuio]

A oo
SHEQOD

- — o —— ——— = e T TEA MR M TR e e - e e - — o ——

butaog
5508

——— e . ke i M — ————— —— . An e o e ma e ok e e e = —

Toszabuy
SIg/SIN

Wao

waysks Iyly jo

Tt
It
b
1
I
|
]
]
I
il
1
N
]
N
I
ti
11
I
R
R satyoawaIaly
1
i
I
N
Hl
I
|
I
Il
i
I
te
I
|
il sa131711qeden/sTvOD
i

171

CHAPTER 8
EVALUATION AND VALIDATION

In this chapter I evaluate the resuits of this research and demonstrate the
advantages offered by ODM. The analyses 1 present below are based on two ap-
plication data bases from Hughes Electro-Opiical and Data Systems Group. One
data base supports the PWA (Printed Wiring Assembly) application at Hughes;
the other data basc contains parr definition data, utilized for testing a Hughes

expert system gencrating Producibility Feedback (PF) [Zuc86). For each appli-

cation, I first present the content and organization of the Hughes data bases,! fol-
lowed by a discussion of the design of corresponding ODM data bases. Exam-
ples extracted from the ODM data bases, and dialogues interacting with the
ODM software system, illustrate the use of ODM features for achieving the

goals of integrated CAD/CAM data bases presented in Chapter 2.

Validation is a certification process assuring that the stated goals of the
research have been achieved. The final section of this chapter discusses the

methods I adopted for validating the ODM prototype software.

The values of data items in the Hughes dutu buses have been altered to preserve the
confidentiality and proprietary nature of this information,

172

8.1 Hughes PWA application

At Hughes, PWA manufacturing is one of the most automated applica-
tions. PWAs are designed on Computervision CAD systems, and process plans
for assembling the components are computer generated. The HICLASS (Hughes
Integrated Classification) system, an Al expert system shell developed in-house,
supports many PWA manufacturing processes [Liu]. The manual assembly of a
PWA is guided by a sophisticated color graphics system. Personnel manipulate
and assemble boards and components with hand-held tools and devices; there-
fore, their hands are not available for keyboard or mouse input. Instead, a user
interacts with the graphical assembly instructions by foot-controlled pedals lo-
cated undemneath the graphics workstation. The integration of many PWA sub-
systems has eliminated manual translation and wansfer of documents, thereby,
minimizing production time. Hughes officials claim that the fiow of paperwork
has been reduced by nearly three-fourths, from an average of 160 hours to 40-70
hours [DMD86].

8.1.1 PWA data bases and file systeins

PWAS are referenced by their assembly number. The data for a specific
PWA resides in two sets of files: transfer data, and /GES (International Graphics
Exchange Specification) graphical data. Transfer data refers to six independent
files describing the components contained in the finished PWA, including
hardware, fasteners, and wires. These files include bill of material data, physi-
cal characteristics of components, elecirical characteristics of components,
characteristics of components subject to automated testing, reference informa-

tion, and general notes. The files are designated as transfer files because they

173

follow the development of a PWA through its manufacturing cycle; thus, they
are transferred from design through manufacturing. Appendices D through 1
contain the six transfer files for PWA M87706172, displayed in Figure 8.1, Ex-
amples discussed in the rest of this section will refer to data for PWA

M87706172.

IGES data consists of four or more files representing the graphical
characteristics of a PWA. One file contains graphical data for the outline of a
bare PWA board, and three files represent graphical data corresponding to three
orthographic views. The four required files represent geomerry entities; optional
IGES files include annotation and structure entities [Ini83). Appendix J
presents data for the board outline of PWA M87706172, and Appendix K illus-
trates a segment of the file representing the top view of PWA M87706172.

The ten files outlined above comprise the data base for a single PWA
and are generated whenever a new PWA is designed. In addition to these
PWA-specific files, four MCL (Master Component Library) files are a vital part
of the Hughes PWA application system. MCL data contains basic physical,
electrical, and structural properties of all components and assemblies. Data is
extracted from these master files and utilized for constructing new PWA transfer

files. Appendices L through O show portions of the four MCL files.
8.1.2 PWA conversion to ODM

ODM evaluation entails two independent investigations. First, I demon-
strate below that ODM is comparable in power to Hughes DBMS facilities for
maintaining PWA data. The second analysis, presented in the following sec-

tions, exhibits improvements in PWA data management by adopting an ODM

174

o
B

Figure 8.1 PWA M87706172

175

model and exercising the unique capabilities ODM provides.

Figure 8.2 shows the PWA data sets described above. IGES data files are
generated by Computervision CAD systems and are only utilized for graphical
display. No data management system is associated with 1GES files. MCL and

transfer data are managed by the relational DBMS, Oracle.! To compare the
functionality of Oracle [Ora79] 1o ODM’s facilities, I constructed ODM data
bases corresponding to Oracle relations. One technique for modeling a relation
in ODM is to create analogous intensions with properties. Therefore, I generated
an ODM intension for each Oracle relation; and attributes of the relation were
converted to ODM properties. This conversion reflects a simple one-to-one
comrespondence between Oracle relations and ODM intensions. The original re-
lation name was retained as the intension name, and tuples of the relation be-
came instances of the intension. I generated one piece of additional structure,
the instance name, which is constructed from key attribute values of a tuple.
Data type information and domain requirements are encoded as constraints on
ODM property values. Figure 8.3 shows the Oracle schema of four MCL rela-
tions. In Figure 8.4, the corresponding ODM intensions are illustrated as OEL
{Object Entry Language) specifications.

The purpose of this exercise is to demonstrate that ODM structures are
equivalent in expressive power to existing PWA relations. The majority of data
manipulation in PWA data bases demands query processing; therefore, I meas-

ure expressive power in terms of query facilities. Because a one-to-one

'When these analyses were conducted at Hughes, DBMS conversion to Oracle was underway.
Since then, Hughes has discontinued its use of Orucle due to unreliable performance.

176

uoljeziuebio 8|y ymd 2'g ainbi4

SI1ON-TVHINTO OANINY3LLYd-OVd
VIVO-1S3L
VOMLDI
JIALS-3SVD
M3IA LNOKA ViVG-3ON3H343y
M3IA QIS V1VO-WVOILO313 NOLLIHOS3Q
1HVd-dNOD
M3IA dOL V1VQ-TVOISAHd
3ININLNO aHVO8 nog Svi3dd
$374 S391 YMd S3714 HISNVHL VM

S31HVHAIT ININOJWNOD HILSYW
S3Id vmd

177

COMP_DETAILS: NAME TYPE WIDTH
COMP_PART_NUM * charx 50
STYLE CODE char 20
COMP_WEIGHT numeric
COMP_WE IGHT_UOM char 20
LEAD_MATERIAL char 50
MAX_NON_OPRING_TEMP numeric
COMP_TEST_ID chax 20
POLARITY numeric
COMP_VALUE char 20
VALUE_UOM char 20
TOLERANCE_PLUS numeric
TOLERANCE_MINUS numeric
POWER_RATING numeric
SEQUENCE_1D numeric
PAD_PATTERN_NUM numeric
STATIC_SENSITIVE char 20
COMP_PART _DESC: NAME TYPE WIDTH
COMP_PART_NUM * char 50
COMP_STATUS char 20
COMP_GROUP char 20
COMP_TYPE char 20
COMP_SPEC char 50
COMP_DESC char $0
CASE_STYLE: NAME TYPE WIDTH
STYLE_CODE * char 20
X_OFFSET numeric
Y_OFFSET numeric
COMP_MIN_LENGTH numeric
COMP_NOM LENGTH numeric
COMP_MAX_LENGTH numeric
CcMP_MIN WIDTH numeric
COMP_NOM WIDTH numeric
CoMP_MAX WIDTH numeric
COMP_MIN HEIGHT numeric
COMP_NOM_HEIGHT numeric
COMP_MAX HEIGHT numeric
KOM_LEAD_ DIAMETER numeric
SHAPE char 50
NO_OF_PINS numeric
PAD_PATTERN_INFO: NAME TYPE WIDTH
PAD_PATTERN_NUM * numeric
PAD_SIZE numeric
PAD_SPAN numeric
DELTA_X numeric
DELTA_Y numeric
Figure 8.3 Oracle MCL schmata

178

(c component~detail-rec
comp-part=-num: L
style-code: L
comp-weight: N
comp-weight-uom: L
lead-material: L
max-non-opring~-temp: N
comp-test-id: L
polarity: N
comp~value: L
value-uom: L
tolerance-plus: N
tolerance~-minus: N
power-rating: N
sequence—-id: N
pad-pattern-num: N
static-sensitive: L)

(¢ component-description-rec
comp-part-num: L
comp-status: L
comp-group: L
comp-type: L
comp-spec: L
comp-desc: L)

(c case-style-rec
atyle-code: L
x~-offset: N
y-offset: N
comp-min-length: N
comp~-nom-length: N
comp-max-length: N
comp-min-width: N
comp-nom-width: N
comp-max~width: N
comp-min~height: N
comp~nom-height: N
comp-max-height: N
nom-lead-diam: N
shape: L
no-of-pins: N)

(c pad-pattern-info-rec
pad-pattern-info: N
pad-size: N
pad-span: N
delta-x: N
delta-y: N)

Figure 8.4 Intensions representing MCL schemata

179

correspondence exists between the structure of QOracle relations and ODM inten-
sions, I claim that any data accessed by a relational query can also be retrieved
by an OML (Object Manipulation Language) command. Similarly, the creation
of new relations and tuples parallels OEL commands to add new intensions and
instances. Although this analysis has demonstrated comparable representation
models, none of the unique ODM features are shown; ODM is merely imitating

a relational model.

The organization of PWA data at Hughes is non-optimal. Data is unna-
turally distributed among MCL and transfer files; furthermore, an inordinate
amount of data duplication is evidenced. For the studies discussed below, I res-
tructured PWA data to promote more effective data management practices. With
these redesigned data bases, I illustrate the benefits of ODM by reviewing
CAD/CAM DBMS goals, highlighting ODM features which support the goal,

and current deficiencies which have been overcome.
8.1.2.1 Conceptually centralized PWA files

In Chapter 2, I presented a primary motivation for this work: the need
for integrated CAD/CAM DBMS. A major obstacle toward integration is the
distribution of data across many independent files and data bases. With the ad-
vent of powerful microprocessors, these self-contained data bases which, until
recently, were retained on a single compuler, are now physically and geographi-
cally distributed among numerous machines. So far, local area networks have

widened, instead of reduced, the conceptual gap between multiple data sources.

180

ODM helps overcome these gaps in three ways. First, ODM networks
promote the construction of directory structures to identify and access applica-
tion data files, The functionality of a directory data base resembles capabilities
provided by an operating system for file management. Second, ODM supports
heterogeneous complex data types permitting file names, hardware devices, ac-
cess procedures, and network protocols to be entered into the directory as data.
Finally, ODM directories allow gradual conversion to a totally integrated
DBMS. Developing a totally integrated system is a five to fifieen year effort;
therefore, application systems and data bases cannot simply be taken off-line for
redesign. With incremental conversion, the directory remains in tact while
specific data bases and files are converted and reformated. DBASs at Hughes and
Rockwell recommend directory data bases for streamlining data retrieval by ini-

tially locating data repositories.

To illustrate these advantages, I constructed a directory schema support-
ing Hughes PWA application data. Figure 8.5 shows the graphical ODM format
of the schema; the corresponding OEL specification is given in Figure 8.6. Each
intension defined in Figure 8.6 represents a file. PWA-FILE is the root intension
and includes relevant file attributes such as file-name, machine, and operating-
system. All other files (intensions) of the data base inherit these attributes. Fig-
ure 8.7 presents the directory schema instantiated with specific PWA files. In
this example, the string ‘‘M87706172"° is used to construct the names of
specific files for PWA MB87706172. File names for other PWAs are also in-
stances of the intension TRANSFER-FILE. A directory organization for PWA

application data supports queries such as:

181

What are the names of all iransfer files for PWA <n>?

Who has authorized access to IGES files for PWA <n>?

What is the login-sequence for access io component-electrical-data of PWA <n>?
In each of these qQueries the main reference key is 8 PWA number. Hughes em-
ployees emphasized that 80% of all data retrieval is keyed on component or
PWA number. A file-oriented directory concepually centralizes data files so a
user can determine where and how to access physically distributed files and data
bases. The last query illustrated above begins to show the potential for incor-
porating procedural access to distributed data bases. In addition to providing
data like login-sequence, the directory could also provide procedures for query-

ing specific data instances.

Figure 8.8 presents an ODM directory organization for managing IGES
files and records. Many CAD/CAM industries and CAD/CAM system suppliers
are being encouraged to provide IGES support for their graphical systems.
IGES standards allow graphical data to be transported between different CAD
systems. An IGES data set consists of five sections, each containing one or
more records. To aid IGES data management, 1 generated an ODM directory
schema such that each section is represented as an intension, and fields of dif-
ferent sections are denoted by attributes of the intensions. In ODM format IGES
data is more comprehensible to users. Contrast the format of a standard IGES
file (Appendices J and K) with ODM instances in Figure 8.9. For transferring
IGES data from one graphics system to another, IGES standard format is re-
quired; therefore, I built automatic procedures to convert in both directions

between ODM instances and IGES files.

182

Ayosesaly Aioyanp yWmd S'g ainbiy

183

(¢

(c
{c
(c
(¢

{c
(c

{c
(c
(c
(c
{c
{c

{c
{c
(¢
{c

{c

pwa-file

file-name: L

machine: §

operating-system: $
system-account~id: L
password: L

access-code: L
authorized-users: (list-of: L)
access-procedures: T)

master~component-library |pwa-file])

component~detail |master-component-libraryl)
component~description imaster-component-libraryl)
case-style |master-component-libraryl)
pad-pattern-info Imaster-component-libraryl)

assembly-file |pwa-file])

transfer—file |assembly-filel)

bom-data |transfer-filel)
component~physical-data |transfer-filel)
component-electrical-data |tranafer-file|)
reference~info |transfer-filej)
electrical-test-data-info |transfer-file|)
general-notes |transfer-filel)

iges-file |assembly-filel)

board-outline |iges-file})
orthographic-view |iges-filel)
mfg-process-view |iges-filel)

bareboard~data |assembly-file|)

Figure 8.6 Intensions representing PWA directory

184

\\\%

v/
el

V877061
RONT-VIEY

=
% 8=
&W§§§§ mmm
NWV k§&v@mmw mﬂw
%, 0>
N A0 ~a

o E -

~5 -

B0 g

: w0

£

by

A\ &

77§84 2

\\\\\\\\ AN U §

L 75

s |52 -

\\\\\“W\\\\\\\\ g = W 3

W el :

\& \\\\\\\\\\\\\ e (2l :

ey AR ’
\AMSSQ & W

vi877061

185

{c

(c

(c

(c

iges-file

start-section: |start-sectionl|
glcbal-section: |global-section|
directory-section: |directory-section]|
parameter-section: |parameter-section]|
terminate-section: |terminate-sectioni)

global-section
field-delimiter: §
end-delimiter: §
sending-system-product-id: §
file-name: S

system-id: §
iges-translator-version: §
integer-bits: I
receiving-system-product-id: §
definition-space-scale: R
unit-flag: I
maximum-line-weight: R
size-of-maximum=-line-width: R
file-generation~date-time: S
minimum-resolution: I
definition-space-size: I
organization: §)

directory-record-id /directory-section/
parameter-record-id: L

entity-type: I

version: N

line-font~pattern: N

level: N

view: |parameter-record-idij
defining-matrix: |parameter-record-id|
label-display: |parameter-record-id|
line-weight: N

pen-number: N

parameter~record-count: I

form-number: N

entity-label: S

entity-subscript: I)

parameter-record-id /parameter-section/

directory-record-id: |directory-record-idi|
parameter-~data: {list-of: T))

Figure 8.8 IGES intensions

186

(i

(i

(i

(i

(i

(i

(i

(i

iges-£ile~-M87706172 |iges-file|

start-section: start-section-M87706172
global-section: global-section-M87706172
directory-section: directory-section-M87706172
parameter-~section: parameter-section-M87706172
terminate~section: terminate-section~MB87706172)

start-section-M87706172 |start-sectionl|
textual~description: "board outline™)

global-section-M87706172 (global-section]|
field-delimiter: =,"

end-delimiter: ";"

file-name: "mfvs.3827.iges.ocutline”
system-id: “"computervision.rev 11.00.cadds"
iges-translator-version: “iges rev 01.00"
integer-bits: 16

definition-space~scale: 201.8000
unit-flag: 1

file-generation-date-time: "831207, 94609"
organization: "72-24-33")

directory-section-M87706172 |directory-section|)

directory~record-l |directory-record-id|
/directory-section-M87706172/

parameter-record-id: parameter-record-l

entity-type: 124

version: 1

status: 0

parameter-record-count: 9)

parameter-section-M87706172 |parameter-section])

parameter-record-l |(parameter-record-id]
/parameter-section-M87706172/

directory-~record-id: directory-record-1

parameter-data: (1.0 0.0 1.0 0.0 0.0 1.0 0.0))

terminate-section-M87706172 |terminate-section]|

number-directory-records: 10
number-parameter-records: 10)

Figure 8.9 IGES instances

187

8.1.2.2 Component-oriented BOM hierarchies

During my site visits at Lockheed, Rockwell, and Hughes, I observed
that a BOM hierarchy is the primary conceptual organization of design and
manufacturing data. Unfortunately, existing DBMS do not directly support this
organization. The second goal of CAD/CAM DBMS, exemplified below, is a
data model facilitating natural BOM data management. Three ODM capabilities
support this goal: an object-oriented representation paradigm, class/subclass

generalizations, and part/subpart aggregations.

A BOM architecture allows the conceptual view of CAD/CAM data to
be equated with the logical view represented by schemata descriptions. For ex-
ample, Figure 8.10 illustrates the conceptual view of PWA data at Hughes. This
conceptual hierarchy enables the physical structure of a PWA to be traced from
assembly through components and hardware. Other DBMS efforts offering date
abstraction hierarchies have resulted in modified relational models with tuple
identifiers and repeating groups. Nevertheless, the underlying relational model
remains inappropriate for an inherently entity-oriented application. An object-
oriented representation allows direct access from PWAs to components and
from components to corresponding assemblies. Each PWA is constructed from
the following items: a bare board; components, such as capacitors and transis-
tors; connectors, i¢., cables and relays; and fasteners, like screws and nuts, Un-
fortunately, current PWA data base organization at Hughes distributes proper-
ties of assemblies, components, fasteners, and connectors throughout six transfer
files and four MCL files, (see Figure 8.2). Retrieving data relevant to a particu-
lar component, for example, capacitor M60985/94-7380, necessitates access

keyed on component M60985/94-7380 from seven different sources.

188

{c0985/94-5380

PART-NUMBER: M60985/94-7380
PART-CODE: CK11-100PF CDIODE >
DESCRIPTION: CERAMIC CAPACITOR

VALUE: 100PF

TOLERANCE: 10%

RATING: 100V

LIBRARY-REF: ACO1 EASTENER
MILITARY-SPEC: MIL-C-60985/94 N
COMPONENT-CLASS: 0 N
NUMBER-PINS: 2
MAX-LENGTH: .160
MAX-WIDTH-DIA: .090
LEAD-DIAMETER: .027

Figure 8.10 PWA conceptual schema

i
i

189

In ODM, I constructed aggregation and generalization networks directly
reflecting the conceptual organization of Figure 8.10. This organization minim-
izes file and data base cross-references; any or all data referring to a given com-
ponent, such as capacitor M60985/94-7380, may be retrieved through a single
access to the intension representing capacitor M60985/94-7380. By querying
the intension named COMPONENT, ODM generalization networks allow access
to properties which all components share. Properties which are common to one
type of component, such as capacitors, are accessed through the CAPACITOR
intension. Properties relevant to a specific capacitor are associated with its in-
tension object, as shown in Figure 8.10. Finally, properties pertaining to
M60986/94-7380 as it relates to PWA M87706172, such as x-offset and x-
origin, are retained with an instance object. Figure 8.11 shows the OEL

specification of the ODM conceptual schema in Figure 8.10.

Another deficiency of Hughes PWA data is the overwhelming amount of
data duplication. Figure 8.12 shows the relational attributes contained in four of
the six PWA relations maintaining transfer data. Out of a total of 20 attributes,
only two, quantity and maximum-thickness, are found in a single relation. Three
of the attributes (excluding the key attribute part number) are duplicated in all
four relations. Other cases of replicated data occur within each of the individual
relations whenever a PWA contains more than one instance of a specific com-
ponent. For example, PWA M87706172 contains three M60985/94-7380 capa-
citors. In the physical-data, elecurical-data, and electrical-test-data relations,
three instances of M60985/94-7380 are stored, however, only six of the 19 attri-
butes differ across the three instances. Property values for x-offset, y-offset, x-

origin and y-origin represent data related not only to the capacitor but also the

190

(c pwa}

(c bareboard /pwa/)

{(c hardware /pwa/)

(c component /pwa/
part-number: L

reference-desig: L
x—-origin: N

y-origin: N
x-offset: N
y-offset: N

orientation: N
component-class: N
number-pins: N
library-ref: L
max-length: N
max-width~dia: N
max-thick: N
lead-diameter: N
military-spec: L
part-code: L
description: §
value: L
tolerance: L
rating: L)

(c fastener |hardware))

(c heat-sink |fastener]|)
(c lug |fastener|)

(¢ spacer |fastener|)

(c nut |fastener|)

(¢ screw |fastener|)

{(c wire |fastener|)

(c washer |[fastener]|)

(c
{c
(c
(c
{c

(c
(c
(c
(¢
{c
(c
(¢
{c
{(c

{c

(¢ connector |hardware|)

relay |jconnector|)
power-to |connector|)
transformer |connectorl)
cable jconnector|)
terminal |connector|)

insulator |component|)

inductor |component|)

resistor |component |}

dip |component|)

hybrid |component})

test-point |component]|)

socket |component|)

diode |componentl!)

capacitor |component| pins:
(greater-than: 0))

M60985/94~7380 |capacitor|
part-number: M60985/94-7380
part-code: ¢kll=-100pf
description: "ceramic"®
value: 100pf
tolerance: 10%
rating: 100v
library-ref: a001
military-spec: c-60985/94
component-class: ¢
number-pins: 2
max-length: .160
max-width-dia: .090
lead~diameter: .027)

Figure 8.11 PWA component intensions

191

complete PWA. Physical and structural attributes of the capacitor, such as
length and diameter, apply to all M60985/94-7380 capacitors, and thercfore,

have identical values across all instances.

A primary problem associated with duplicated data (aside from the over-
head of extra storage facilities) is maintaining consistency. In an extreme case,
modifying the lib reference value of component M60985/94-7380 requires
modifications to the four transfer relations for PWA M87706172. Furthermore,
within each of three of those relations: physical-data, electrical-data, and
electrical-test-data, three entries must be modified accordingly because PWA
M87706172 contains three M60985/94-7380 capacitors. Similar modifications
are also required for other PWAs contdining capacitor M60985/94-7380.

Data abstraction facilities offered by generalization and aggregation net-
works, discussed in Chapters 5 and 6, minimize data duplication. Attribute
values which are common to all instances of an intension are retained with the
intension. Aggregation networks allow a component contained in many PWAs
to be represented once and referenced by its instance name. Figure 8.13
presents an instance of PWA M87706172, and one of its components. The left
side of Figure 8.13 is identical to one branch of the ODM hierarchy in Figure
8.10. Component attributes, such as pauri-code and number-pins, are only
specified once for capacitor M60985/94-7380; however, they are distributed
through instantiation to the three instances contained in PWA M87706172. In
Figure 8.13, only component attributes related to PWA M87706172 are retained
with instance M60985/94-7380-1. Modifications to intension attributes impli-
citly effect those attributes of instances. The modifications are also applied to all

PWAs which contain the modified component. Figure 8.14 shows instance data

192

PWA relations

BOM

physical

data

electrical

data

electrical
test data

+

component
attribute

part number
ref designator
x-org

Y-org
x-offset
y-offaet
orientation
component cla
lib reference
max-length
width-dia
lead-dia
military spec
max-thickness
part-code
description
value
tolerance

|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
t
l
|
|
|
|
|
|
i
|
|
I
|
|
|
|
|
|
|
I
|
|
i
|
rating |
|

{
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
|
i
!
|
|
|
|
|
|
|
|
i
|
|
|
|
I
|
|
|
|
|
i
|
|
|
|
|
i
|
|
[

/
|
'
|
|
|
|
|
|
|
|
|
|
{
|
|
{
i
!
|
|
|
|
|
i
|
|
i
|
|
!
|
|
|
!
|
|
|
i
|
|
{
|
|
|
|
|
|

|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
i
|
I
|
|
|
!
|
{
I
|
|
|
;
|
|
!
I
|
i
|
I
|
|
|
|
|
|
I
i
!
I
|

==> attributesa in the indicated relation
==> attributes which are identical for the same components

Figure 8.12 Replication in PWA data

193

e ————— ————————r — — ——— . 2f M ——— — ——— —— T - ———— — — A= v — i — —

for the three M60985/94-7380 capacitors contained in an instance of PWA
M87706172.

In this section I have described how the BOM organization, supported by
ODM, improves conceptual accessibility. 1 redesigned the logical view of the
PWA data bases to reflect the hierarchical conceptual schema. All component
data related through the contains relationship is accessed directly from the PWA
in which it is contained. Dialogue 8.1 shows a session using OML (Object
Manipulation Language) commands based on the ODM schemata in Figures
8.10 and 8.13.

Dialogue 8.1 OML dialogue traversing PWA networks

> (send pwa get-subparts)
{COMPONENT HARDWARE BAREBOARD)

> (send hardware get-specializations)
(CONNECTOR FASTENER)

> {send connector get-aspecijalizations)
(TERMINAL CABLE TRANSFORMER POWER-TO RELAY)

> (send fastener get-spacializations)
(WASHER WIRE SCREW NUT SPACER LUG HEAT-SINK)

> (send component get-specializations)
(CAPACITOR DIODE SOCKET TEST-POINT HYBRID DIP
RESISTOR INDUCTOR INSULATOR)

> (send component show-self)

COMPONENT
PART-NUMBER
REFERENCE-DESIG
X-ORIGIN
Y-ORIGIN
X-OFFSET
Y-OFFSET
ORIENTATION
COMPONENT-CLASS
NUMBER-PINS
LIBRARY-REF
MAX~-LENGTH
MAX-WIDTH-DIA

194

M60985/94-7380-1

v
REFERENCE-DESIG: C003
X-ORIGIN: 3.325
Y-ORIGIN: 1.550
X-OFFSET: .200
Y-OFFSET: 0
ORIENTATION: 0

Figure 8.13 PWA component instances

195

(i

(i

(i

(1

M87706172 |pwal)

M60985/94~-7380-1 |M60985/94-7380| /MB87706172/
reference-desig: c003

x-~origin: 3.325

y-origin: 1.550

x-offset: .200

y-offset: 0

orientation: 0)

M60985/94-7380-2 IM60985/94-7380| /MB7706172/
reference-desig: c004

x-origin: 2.750

y-origin: .450

x-offset: .250

y~-offset: 0

orientation: 0)

M60985/94-73680-3 |M60985/94-7380) /MB87706172/
reference-desig: c008

x-origin: 3.125

y-origin: 1.900

x-offset: .350

y-offset: 0

arientation: Q)

Figure 8.14 OEL specification of PWA instances

MAX-THICK
LEAD-DIAMETER
MILITARY-SPEC
PART-CODE

DESCRIPTION

TOLERANCE

> (send capacitor show-self}
CAPACITOR
NUMBER-PINS

> (send capacitor get-apscializations)
{M60985/94-7380)

> (send M60985/94~7380 show-self)
M60985/94-7380
PART-NUMBER

196

PART~CODE
DESCRIPTION
VALUE
TOLERANCE
RATING
LIBRARY~-REF
MILITARY-SPEC
COMPONENT~-CLASS
NUMBER-PINS
MAX~-LENGTH
MAX~-WIDTH-DIA
LEAD-DIAMETER

> (send M60985/94-7380 get-property-slot description p-value)
"ceramic capacitor"

> (send M60985/94-7380 get-property—-slot number-pins p-value}
2

> (send M60985/94-7380 get-property-slot military-spec p-value)
MIL-C-60985/94

> (send pwa get-instantiations)
(M87706172)

> (send M87706172 get-parts)
(M60985/94-7380-3
M60985/94-7380-2
M60985/94-7380~-1)

> (send M60985/94-7380-3 show=—self)
M60985/94-7380-3

REFERENCE-DESIG: €0Q8

X-ORIGIN: 3.125

Y-ORIGIN: 1.9

X-OFFSET: 0.35

Y-OFFSET: ©

ORIENTATION: 0

> {(send M60985/94-7380-3 show-self-in-detail)
M60985/94-7380~3
PART-NUMBER: M60985/94-7380
REFERENCE-DESIG: CQ08
X-ORIGIN: 3.125
Y-ORIGIN: 1.9
X-OFFSET: 0.35
Y-OFFSET: 0O
ORIENTATION: 0O
COMPONENT-CLASS: O
NUMBER-PINS: 2
LIBRARY-REF: AOOl
MAX-LENGTH: 0.16
MAX-WIDTH-DIA: 0.09
MAX-THICK: ()
LEAD-DIAMETER: 0.027

197

MILITARY-SPEC: MIL-C-60985/94
PART-CODE: CK11-100PF
DESCRIPTION: ceramic capacitor
VALUE: 100PF

TOLERANCE: 10%

RATING: 100V

> (send M60985/94-7380~2 show-self)
M60985/94-7380-2

REFERENCE-DES1G: CO004

X-ORIGIN: 2.75

Y-ORIGIN: 0.45

X-OFFSET: 0.25

Y-OFFSET: 0

ORIENTATION: 0

8.1.2.3 Customized components and assemblies

DBMS schema facilities describing CAD/CAM data cannot represent se-
mantic features, structure, or relationships. Semantic features such as holes,
flanges, and cutowss are only represented graphically by entities like lines and
circles. Structural relationships, for example, orthogonal-to, on-top-of, and in-
side, are not explicitly represented, although they are implicitly present in an en-
gineering drawing, and are relationships which effect design and manufacturing
processes. One reason existing DBMS cannot model these entities is because
the extent of semantic data cannot be enumerated; semantic entities are not fixed
across all parts and assemblies. Current schema definitions can only capture
characteristics of parts and assemblies which are common to all instances being
modeled. This limitation severely restricts the types of information which can be

represented.

ODM'’s dynamic schema and hierarchical constraint management im-
proves the flexibility and robustness of schema facilities. The goal of custom-
ized representations enables a designer to specify many individual semantic

features of a product during the design stage. In most cases, designers know the

198

relevant features and relationships necessary for future processing. Entering se-
mantic information during product definition realizes three benefits. First, data
generation for a new part is optimized. Extracting relevant data from the en-
gineering drawing is a time consuming task usually requiring numerous itera-
tions. In many CAD/CAM environments, new specialized data bases are creat-
ed for each separate process, although the content of the data bases is similar.
Data should be entered once and retained for use throughout part fabrication. A
second benefit is the consistency which is promoted by interleaving design with
data entry. If the data is generated at the same time the part is designed, the
same information is maintained and referenced throughout the manufacturing
cycle, in the same way that an engineering drawing is referenced. Currently,
data used in different facets of production may be incompatible or contradictory.
Modifications to semantic design data should require the same control which is
enforced for changes to engineering drawings. Finally, with a dynamic schema,
data base design efforts are reduced. Schema structures and constraints are ad-
ded and modified dynamically, instead of incurring expensive reconfiguration

costs for reformating a data base.

In the context of Hughes PWA application, customizing a PWA
representation means that data bases of new PWAs can easily be generated by
designers from existing component data bases. Let’s assume a new PWA, say
M9999, is being designed and contains capacitor M60985/94-7380 (which is
also contained in PWA M87706172), Currently it is necessary to construct en-
tries for PWA M9999 in four transfer relations, where the majority of data is
identical to the values for instances of capacitor M60985/94-7380 in PWA
M87706172. Data replication persists because capacitor M80985/94-7380 is

199

defined as an instance of an MCL component relation rather than a schema
definition. Instead, if capacitor M80985/94-7308 is regarded as an intension, as
in Figure 8.10, then specific instances are created as components of the new
PWA M9999. All generic properties of capacitor M80985/94-7308 are retained
with the intension. Only seven properties (those without a *‘+’" in Figure 8.12)
pertain to instances and therefore only seven new pieces of data are entered for

each capacitor contained in the new PWA M9999,

In Figure 8.10, the intension, CAPACITOR, maintains data shared by all
capacitors. If a new capacitor is designed, a new specialization of CAPACITOR
is created dynamically which inherits those properties and values common to all
capacitors. Figure 8.15 depicts an ODM network with a new PWA, M9999, con-
taining one capacitor M60985/94-7308-5, and one new capacitor, M99/99-99-1,
OML commands creating the new PWA and capacitor are presented in Dialogue

8.2. Data underlying Dialogue 8.2 is based on the schema in Figure 8.10.

Dialogue 8.2 OML dialogue creating new PWA components

> (send pwa def-instance M9999)
M9999

> (send M60985/94-7380 def-instance M60985/94-7380-5)
M60585/94-7380-5

> (send M60985/94-7380-5 show-self-in-detail)
M60985/94-7380-5
PART~-NUMBER: M&0985/94-7380
REFERENCE-DESIG: ()
X-ORIGIN: ()
Y-ORIGIN: ()
X-OFFSET: ()
Y-OFFSET: ()
ORIENTATION: ()
COMPONENT-CLASS: 0
NUMBER-PINS: 2
LIBRARY-REF: A001
MAX-LENGTH: 0.16

200

1
\
Y
=§=§

f |
M60985/94- 7380 5 %
M99/99-99 "“"“I"l"lumnummmm ==
[=
M998/99-99-1

Iy llllllllill
LT
IlllIlllIlllllllllilllllllllllll ity
IIIIIIIIIIIIIII
L)

Figure 8.15 New PWA instances

MAX-THICK: ()

LEAD-DIAMETER: 0,027
MILITARY-SPEC: MIL-C-60985/94
PART-CODE: CK11i-100PF
DESCRIPTION: ceramic capacitor
VALUE: 100PF

TOLERANCE: 10%

RATING: 100V

> (send M9999 def-subpart M60985/94-7380-5)
ME0985/94-7380~5

> (aend M9%999 get-parts)
(M60985/94-7380-5)

> (send M60985/94-7380-5 set-property-value x-offset 3.15)
3.15

> {(send M60985/94-7380-5 show-self)
M60985/94-7380-5
X-OFFSET: 3.15

201

> (send capacitor def-subclass M95/995-99)
M99/99-99

> (send M99/99-99 show-self)
M95/99-99

> (send M99/99-99 def-instance M99/99-99-1)
M95/99-99~-1

> (send N99/99-99-1 show-self-in-detail)

M99/99-99-1
PART-NUMBER: ()
REFERENCE-DESIG: ()
X=-ORIGIN: ()
Y-ORIGIN: ()
X-OFFSET: ()
Y-OFFSET: ()
ORIENTATION: ()
COMPONENT-CLASS: ()
NUMBER-PINS: ()
LIBRARY-REF: ()
MAX-LENGTH: ()
MAX-WIDTH-DIA: ()
MAX-THICK: ()
LEAD-DIAMETER: ()
MILITARY-SPEC: ()
PART-CODE: ()
DESCRIPTION: ()
VALUE: ()
TOLERANCE: ()
RATING: ()

> (send M9999 def-subpart M99/99-99-1)
M99/99-99-1

> (send M9999 get-parts)
(M99/99-99-1 M60985/94-7380-5)

Hierarchical constraint management also contributes to customized

representations. ODM’s semantic constraint facilities permit constraint cascad-

ing along a generalization hierarchy. For example, in Figure 8.16, CAPACITOR

is a specialization of COMPONENT, and capacitor M60985/94-7308 is a spe-

cialization of CAPACITOR. Therefore, the value constraint of a property, such

as number-pins, may be more specialized for a specific capacitor than for a com-

ponent in general. In Figure 8.16, the value constraints on ‘‘number-pins’’ range

from numeric; to a specific value, namely, 2, for capacitor M60985/94-7308.

202

ODM Dialogue 8.3 is based on the scenario presented in Figure 8.16. These
hierarchical constraint facilities further improve the robustness of ODM’s

dynamic schema facilities.
Dialogue 8.3 OML dialogue checking component constraints

> (send component def-inztance component-500)
COMPONENT-500

> (send component-500 set-property-value number-pins none)

** Error: NONE -- not a legal value

> (send component-500 set-property-value number-pins 0}
o

> (send capacitor def-instance capacitor-600)
CAPACITOR~600

> (send capacitor-600 set-property-value number-pins 0}

** Error: 0 -— not a legal value

> (send capaciter-600 set-properxty-value number-pins B)
8

> (send M60985/94-7380 def-instance M60985/94-7380-9)
M60985/94~-7380-9

> (send M60985/94-7380-9 set-property-value number-pins 8}

** Error: 8 —- not a legal value

> (send M60985/94-7380-9 get-property-value number-pins)
2

The examples described above begin to reduce the distinction between
conventional DBMS schema and data. As I previously discussed, data manage-

ment practices promoted by dynamic schemata are desirable, especiaily in

203

sy,
/////,, s,
NUMBER-PINS: [> 0 sy,
P[>0l " CAPACITOR

£0985/94-7380) 17,
! L7

ittty .
NUMBER-PINS: [« 2] e ’//////,//////////,,
: 7
“M60985/94

Figure 8.16 Hierarchical constraints in ODM

204

CAD/CAM applications where the structure of a product should be reflected in
the structure of its data.

8.2 Hughes PF system

A project currently under development at Hughes is applying expert sys-
tem technology for analyzing producibility data in mechanical design. Produci-
bility analysis considers the physical and structural properties of a machined
part during the design phase, and determines how these properties affect fabrica-
tion, For example, if two holes are drilled too close to one another, a weakened
structure results. Currently, process planners and manufacturing planners review
engineering drawings and accompanying notes and instructions. They must
determine if a machined part can be manufactured according to the designer’s
specifications. Hughes Producibility Feedback (PF) system aims to automate
these tasks.

In the rest of this chapter, I discuss the use of ODM features for produci-
bility analysis currently performed by expert system rules. One machined part
design utilized at Hughes for testing their PF system is presented in Figure 8.17.
The data base for this drawing contains geometry data; draw form and datum
specifications; and feature data for holes and surfaces. The ODM version of

these data bases is used for the analysis presented in the following sections.

8.2.1 Expressing standards as constraints

In all design environments, numerous constraints must be considered and
enforced. Many constraints reflect common sense; or, they are part of the

knowledge retained by a designer. For example, mechanical designers know

205

[2]
32v4uns

ued aidwes 44 21'g ainbiyg

I

I3

oseL”

¥
000'2

i

000°E

Nt

Jiaas

1 30

uml\ _.= es—"

005"
2 JunLvis u..oxi/ pve
§.-.l

o n Tﬂ— 0001 =
005’
T

0s2°1

: —]

[+]0] 24

v 3104
005 ¢
0 3unLvay 3108
2 JUNLIVIS I0M a
dhl SU'P

8 Junivly
ER]

206

principles of structural and stress analysis, and they confine their designs to con-
form to these principles. In addition to constraints imposed by the application
domain, industries also enforce their own constraints on properties of their prod-

ucts.

Throughout a design and manufacturing cycle, constraints are continu-
ously checked, validated, and amended. If a design flaw goes unnoticed until the
part is on the production line, vast corporation losses in terms of time and
money are incurred. Corporations continually search for techniques to automati-
cally verify design data. Standard DBMS fall short in terms of this goal. Value
and structural integrity constraints are usually aimed at limitations on the data,
These constraints are imposed by computational components of the systems
such as: DBMS software, DBMS hardware, and secondary storage. For exam-
ple, if the name field in a data base record is limited to 32 characters, this res-
triction doesn’t imply that in the real world no one is assigned a name with more
than 32 characters. Similarly, if a parent/child data base enforces existence con-
straints disallowing orphans, you cannot infer that there aren’t any parent-less
children! Some constraints do help maintain consistency with the world being
modeled, for instance, verification of calendar dates. However, in general,
DBMS constraints maintain the integrity of the data being managed; they do not

maintain the integrity of the world being modeled.

ODM facilities for representing and verifying semantic constraints per-
mit many domain standards to be incorporated into a data base and maintained
by a data management system. Lockheed cites the following advantages of cou-
pling standards verification with data management processes. First, interactive

verification enables designers to reenter erroneous data during the design pro-

207

cess. Current batch verification loops through all data and produces error re-
ports. Designers review the error reports and make appropriate corrections. The
data is then resubmitted for another iteration of batch verification. Alternatively,
interactive checking produces a tight loop of iteration over single data values;
designers reenter data for a single property until a value is accepted. Another
advantage is knowledge centralization. Siwndards, operationalized as con-
straints, centralize information within an assembly or part representation. This
localization of knowledge reduces the number of different information sources,
like manuals and handbooks, which are consulted. Also, centralized knowledge
is easy to access, view, and modify. Maintaining knowledge as data base con-
straints contrasts with the use of an expert system where knowledge is contained

within procedural rules or other knowledge representation.

In the examples described below, I show how expert system knowledge
is incorporated in an ODM data base through semantic entity representation and
constraint specification. These examples refer to the machined part in Figure
8.17. 1 also present examples of rules implemented in Hughes PF expert system
and illustrate how the knowledge embedded in these rules is verified by ODM

constraint maintenance,
8.2.2 PF knowledge in ODM networks

Hughes PF system analyzes hole and surface features. Therefore, a prac-
tical representation of a machined part requires prbi)erties relevant to holes and
surfaces. Figure 8.18 shows an ODM network with intensions, specialization
links, and aggregation relationships necessary for modeling producibility data.
The corresponding OEL input including property specifications is given below.

208

ODM instance data for hole and surface features of Figure 8.8.17 is presented in

Appendix P.

| \

DETAIL-PART DRAWFORM

|

Figure 8.18 ODM representation of machined part

OEL specification of machined part

(c detail part
draw_form: |draw_form|
datum: {datum|
number_of holes: I
holes: (list-of: |holsl)
number_of_surfaces: I
surfaces: (list-of: |surface|)

209

+ % % % * ¥

{c

{c

{c

(c

size _Xx_axis: R

size_y_axis: R

size_Z_axis: R

part_volume: (less-than: 400.0)

material: (one-of: aluminum steel)

original_ form: (one-of: casting forging barstock plate)
original form x_axis: (less-than: 20.0)
original_ form y_axis: (less-than: 20.0)
original form z_axis: (lesa~than: 18.0})

draw_form

detail part: |detail_part|

designer: {(one-of: smith jones clark)
revisions: T

block_tolerance: .001

project: T
program; T)
datum

detail _part: |detail part|
primary datum: T
secondary_datum: T
tertiary datum: T
ref_datum a: T
ref_datum b: T
ref_datum c: T)

feature /detail part/)

hole |feature|

detail part: |detail part|

ent_surface: T

exit_surface: T

int_x_geo: T

diameter: (one-of: 0.0625 0.1250 0.1875 0.2500 0.3750
0.5000 0.6250)

dia_tol: T

bottom_cond: L

surface_cond: R

tap_size: (one-of: 3-48 3-56 4-48 6-32 8-32 10-24 12-28)

pos_tol: R}

hole_ref

detail part: |detail_part|
x_start_loc: T
x_start_ref surface: T
x_end_loc: T
x_end_ref_surface: T
y_start loc: T
y_start_ref surface: T
y end loc: T
y_end_ref surface: T
z_start_loc: T
z_start_ref surface: T
z_end _loc: T

210

z_end_ref surface: T)

(c surface |feature|
detaill part: |detail parti
resident_plane: T
x_bounding_plane_xy: (list-of: |surface]|)
y_bounding_plane_xy: (list-of: |surfacel|)
x_bounding_plane_xz: (list-of: |surface]|)
z_bounding plane xz: (liet-of: |surfacel)
y_bounding_plane_yz: (list-of: |surface]|)}
z_bounding_plane yz: (list-of: |surfacei)
datum plane: T

* fillet_radius: (greater-than: .015)

* corner_radius: (greater-than: ,015)
type_of_ surface: T
surface_finish: T
number_of_intersecting hcles: T)

For the following demonstrations, I selected eight PF rules which exam-
ine producibility data. Condensed versions of theffz rules are presented below.
In most cases, the rules reflect industry or corporatit;n standards. In the PF sys-
tem, if data is determined to be non-standard, an appropriate error condition is
generated. However, the PF system is a passive analysis tool; therefore, no at-
tempt is made to flag or reject unacceptable values. The information verified by

these rules is expressed in ODM by those properties listed above which are pre-

faced by an ‘‘*'’.! Below I discuss three PF rules in detail and describe how
ODM actively rejects nonstandard values when they are entered into the data

base.

Rule (1) determines whether the part under consideration conforms to
the requirements for standard processing. If any of the three conditions ex-
pressed in Rule (1) are violated, a ‘‘Process type is nonstandard’’ message is re-

ported. This PF rule combines three conditions into one rule, but supplies little

!In the OEL specification of a machined part, an ***"* .is not part of the OEL syntax; it is only
included for discussion purposes.

211

information, if the rule fails, about erroneous values. The knowledge expressed
in this rule corresponds to value constraints associated with three properties of
the intension, DETAIL-PART: part-volume, material, and original-form,. An
ODM value constraint on part-volume restricts the volume to a value less than
400.0. The material property is limited to either aluminum or steel. Similarly,
the value of original-form must be one of four possible values. In ODM, an

unacceptable value for any of the relevant properties is rejected immediately.

PF expert system rules

Rule (1) IF original form IS CONTAINED IN
{casting forging barstock plate}
AND
material IS CONTAINED IN {aluminum steel)
AND
part volume I3 LESS THAN 400.0
THEN
EXECUTE print ("Process type is standard")
ELSE
EXECUTE print ("Process type is nonstandard")

Rule (2} IF (original form x axis IS LESS THAN 20.0)
AND
(original form y axis IS LESS THAN 20.0)
AND
{original form z axis IS LESS THAN 18.90)
THEN
EXECUTE print
("Process type equals standard mill size")
ELSE
EXECUTE print
("Process type egquals nonstandard mill size")

Rule (3) IF designer IS CONTAINED IN {smith jones clark}
THEN
EXECUTE print ("Designer has been cleared")
ELSE
EXECUTE print ("Designer has not been certified")

Rule (4) IF block tolerance IS EQUAL TO .001
THEN
EXECUTE print ("Block tolerance is acceptable")
ELSE

212

EXECUTE print ("Block tolerance is unacceptable™)

Rule (S) IF diameter IS CONTAINED IN { 0.0625 0.1250 0.1875
0.2500 0.3750 0.5000 0.6250}
THEN
EXECUTE print
(*Hole diameter is standard size hole")
ELSE
EXECUTE print
(*Hole diameter is not a standard size hole")

Rule (6) IF tap size IS CONTAINED IN { 3-48 3-56 4-48 6-32
8-32 10-24 12-28 }
THEN
EXECUTE print ("Called ocut tap size is ok"}
ELSE
EXECUTE print ("Called out tap size is nonstandard"}

Rule (7) IF fillet radius IS GREATER THAN .01S
THEN
EXECUTE print
("Fillet radius is permitted")
ELSE
EXECUTE print ("Fillet radius is less than permitted”)

Rule (8) IF corner radius IS GREATER THAN .015
THEN
EXECUTE print
(*"Corner radiua is acceptable")
ELSE
EXECUTE print ("Corner radius is unacceptable")

The block-tolerance of an engineering drawing is verified by Rule (4).
Block-tolerance, a property of DRAW-FORM, is restricted to a specific value,
namely, .001. Any other value produces an ‘‘Unacceprable block tolerance’’

message in the PF system and, likewise, is rejected by ODM.

In Rule (7) the attribute of a surface feature is examined. Fillet radius is
a property of SURFACE and is limited to a value greater than .015. The
corresponding ODM value constraint limits the property accordingly. Dialogue

8.4 presents an ODM session setting and retrieving properties validated by these

213

eight PF rules. The data base underlying this ODM session contains the OEL
specification schema presented above and input data listed in Appendix P
corresponding to Hughes PF test data represented in Figure 8.17.

Dialogue 8.4 OML dialogue checking producibility constraints

> {(send new_part show-self)
NEW_PART
SIZE X _AXIS: 5.0
SIZE_Y_ AXIS: 2.5
SIZE Z AXIS: 3.0
PART VOLUME: 20.5
MATERIAL: ALUMINUM
ORIGINAL FORM: CASTING
ORIGINAL FORM X AXIS: 5.165
ORIGINAL FORM_Y AXIS: 2.625
ORIGINAL FORM_Z_AXIS: 3.165
NUMBER_OF_HOLES: 6
NUMBER OF SURFACES: 8

> (send new_part set-property-value material plastic)

#* Error: PLASTIC -- not a legal value

> (send new_part set-property-value material steel)
STEEL

> (send new_part set-property-value original form block)

** Error: BLOCK -- not a legal value

> {send new_part set-property-value original_form barstock)
BARSTOCK

> (send new_part set-property-value part_volume 550.0)

** Error: 550.0 -=- not a legal value

>(send new _part set-property-value part_volume 350.0)

350.0

> (send new_part set-property-value original_ form z_axis 20.0)

%% Error: 20.0 -- not a legal valus

> (send new_part set-property-value original_ form_z_axis 14.0)

214

14.0

> {(send new_part show-self)
NEW_PART
SIZE X AXIS: 5.0
SIZE Y_AXIS: 2.5
SIZE_2_AXIS: 3.0
ORIGINAL FORM_X AXIS: 5.165
ORIGINAIL FORM Y AXIS: 2.625
NUMBER OF_ HOLES: 6
NUMBER _OF SURFACES: 8
MATERIAL: STEEL
ORIGINAL FORM: BARSTOCK
PART VOLUME: 350.0
ORIGINAL_FORM Z_AXIS: 14.0

> (send new_part_draw_form show-self)
NEW_PART_DRAW_FORM

DETAIL_PART: NEW_PART

DESIGNER: CLARK

REVISIONS: REV_A

BIOCK_TOLERANCE: 0.001

PROJECT: DEMO

PROGRAM: UCLA

> {(send new_part_draw_form set-property-value
designer johnson)

*% Error: JOHNSON -- not a legal value

> (send new_part draw_form set-property-value
designer smith)
SMITH

> (send new_part draw_form set-property-value
block_tolerance .02)

** Error: 0.02 ~- not a legal value

> (send new_part_draw_form set-property-value
block_tolerance .001)
0.001

> (send new_part_draw_form show-self)
NEW_PART_DRAW_FORM

DETAIL PART: NEW_PART

REVISIONS: REV_A

PROJECT: DEMO

PROGRAM: UCLA

DESIGNER: SMITH

BLOCK_TOLERANCE: 0.001

> (send hole b data show-self)

215

HOLE_B_DATA
DETAIL_PART: NEW_PART
ENT_SURFACE: S5
EXIT_SURFACE: S3
INT_X_GEO: 81
DIAMETER: 0.125
DIA_TOL: 0.001
BOTTOM_COND: THRU
SURFACE_COND: 0.001
TAP_SIZE: 3-56
POS_TOL: 0.001

> (send hole b data set-property-value diameter .7500)

** Error: 0.75 - not a legal value

> (send hole_b_data set-property-value diameter .625Q)
0.625

> (send hole_b_data set-property-value tap_size 4-32)

% Error: 4-32 -- not a legal value

> (send hole_b_data set-property-value tap_size 4-48)
4-48

> (send hole_b_data show-self)

HOLE_B_DATA
DETAIL_ PART: NEW_PART
ENT_SURFACE: S5
EXIT_SURFACE: S3
INT_X_GEO: S1
DIA_TOL: 0.001
BOTTOM_COND: THRU
SURFACE_COND: 0.001
POS_TOL: 0.001
DIAMETER: 0.625
TAP_SIZE: 4-48

> (send 33 show-self)

83
DETAIL_ PART: NEW_PART
RESIDENT PLANE: (X Y)
X_BOUNDING_PLANE XY: ()
Y_BOUNDING _PLANE XY: ()
X_BOUNDING_PLANE XZ: ()
Z_BOUNDING_PLANE XZ: ()
Y_BOUNDING_PLANE_YZ: ()
Z_BOUNDING_PLANE_Y2: ()
DATUM_PLANE: NO
FILLET_ RADIUS: 0.02
CORNER_RADIUS: 0.028
TYPE _OF_ SURFACE: MACH

216

SURFACE_FINISH: 0.001
NUMBER_OF _INTERSECTING_HOLES: S

> (send 83 set-property-value fillet_radius .015)

** Error: 0.015 -- not a legal value

> (send 83 get-property-value fillet_ radius)
0.02

> (send 83 set-property-value fillet_ radius .024)
0.024

> (send 83 get-property-value corner_radius)
0.028

> (send 83 show-self)

83
DETAIL PART: NEW_PART
RESIDENT_PLANE: (X Y)
X_BOUNDING_PLANE_XY: ()
Y_BOUNDING_PLANE XY: (}
X_BOUNDING_PLANE XZ: ()
Z_BOUNDING PLANE_X2: ()
Y_BOUNDING PLANE YZ: ()
Z_BOUNDING PLANE YZ: ()
DATUM_PLANE: NO
CORNER_RADIUS: 0.028
TYPE_OF _SURFACE: MACH
SURFACE FINISH: 0.001
NUMBER_OF _INTERSECTING HOLES: 5
FILLET RADIUS: 0.024

The three rules previously discussed consider properties independently.
That is, a nonstandard condition is determined by examining the value of a sin-
gle property in isolation. In the PF rule given below, a nonstandard condition

depends on two properties of a hole, diameter and diameter-tolerance,

217

IF ((diameter > 0.125 AND diameter < (.750) AND
{diameter-tolerance < 0.0005))
OR
{(diameter > 0.750 AND diameter < 2.0) AND
{diameter-tolerance < 0.0008))
CR
{(diameter > 2.0 AND
{diameter-tolerance < 0.0015))
THEN
EXECUTE print ("Tolerance callout is too tight")

ODM permits analogous constraints, although, the constraint specification is
more procedural in nature. An ODM value constraint for the property,
diameter-tolerance, of the HOLE intension is the following:
{send HOLE set-property-slot diameter—~tolerance p=-lambda
(lambda (x self)
(let* ((diameter {ask self get-property-value diameter}))
{if diameter
then
{(oxr (and (> diameter .125)
(< diameter .750)
(> x .0005))
(and (> diameter .750)
(< diameter 2.0)
(> x .0008))
(and (> diameter 2.0)
(> x .0015)))
else (number? x)))))
In the above constraint, if the value of diameter has not been entered, then any
numeric value is allowed for the value of diameter-tolerance. However, if the
value of diameter has already been set, then diameter-tolerance is constrained

accordingly.

Combining data entry with producibility analysis benefits design opera-
tions in four ways. First, immediate feedback is produced when invalid data is
entered. Second, domain knowledge is associated with semantic schema
definitions; therefore, it is easier to locate, view, and modify. Integrating design

and analysis tasks is another benefit contributing to production line efficiency.

218

Finally, a higher degree of consistency is afforded during design phases. The
resulting CAD environment helps maintain and control the integrity of product

designs.
8.3 ODM validation

Validation of research results affords impartial confirmation that the
goals of the resecarch have been met. For this dissertation work, I relied on
Hughes personnel to independently certify the CAD/CAM DBMS improve-
ments which I claimed to have achieved. Hughes employees critically reviewed
cach phase of the evaluation process described earlier in this chapter. They sup-
ported and approved my evaluation methodology using both PWA and PF appli-

cation data.

Injtial conversion of existing Hughes PWA data to the corresponding
ODM organization was uncomplicated and direct. Hughes personnel agreed that
the capabilities of the resulting ODM data bases were at least as powerful as

their existing data management facilities.

For the second phase of evaluation, CAM department members at
Hughes supplied notes and diagrams documenting their conceptual view of
PWA data [Nig85). These documents formed the kernel of new PWA data
bases which 1 designed using the ODM prototype software. Hughes staff
members examined the restructured data organization including schemata, data
instances, and constraints. In addition, they reviewed the dialogues presented in
the preceding sections demonstrating interactions with the ODM computer
software. Their analysis confirmed those benefits which I highlighted in the

sample sessions [Liu85,Zuc85]. They also emphasized the following advan-

219

tages over their conventional DBMS practices:

* Conceptual view of application data equates with logical DBMS
view. Currently, a wide gap exists between the conceptual
representation of PWAs and the logical organization of existing
data bases. Bridging this gap enables designers and manufactur-
ers to interact with the data bases in a fashion which is most na-
tural for them.

* [nteractive browsing. Using ODM generalization and aggrega-
tion networks, users can inspect the properties, subparts, and
classifications of PWAs, components, hardware, and fasteners.
They can directly access the content (properties and constraints)
of a data base object, or they can view an object as a node in a
network and traverse connecting links to access related objects.

* Built-in ‘‘contains’’ relationship with transitive closure opera-
tions. Bill of Materials data can be processed more effectively if
it is organized hierarchically and users can view and query the
data in a hierarchical manner.

* Modifiable schema supporting PWA changes. Decisions concern-
ing the structure of PWAs and components are sometimes de-
ferred by the designers. With modifiable schema structures, the
data bases for these entities can be generated as they are
designed, instead of waiting until all design decisions have been
made.

® Reduction of duplicated data. This improvement cases the task of
maintaining consistency across many duplicate data items.

e Centralization of component data. By using the ODM architec-

220

ture for PWA data, it is no longer necessary to access four Master
Component Library files to retrieve all data for an existing com-
ponent. Furthermore, when constructing a new PWA, data is en-
tered into a single data base rather than four transfer files.

® More meaningful presentation of IGES graphical data. IGES
data organized as ODM objects is much more comprehensible to
users. Existing IGES formats are only efficient for graphical

CAD systems supporting IGES standards.

The demonstrations presented in this chapter, along with the described
validation process, affirm the utility of ODM in operational CAD/CAM applica-
tions. I have shown that ODM is comparable to relational models for maintain-
ing Hughes PWA data. More importantly, PWA and PF applications served as
authentic testbeds exemplifying significant improvements in CAD/CAM data
management. The corresponding ODM data bases exhibit the qualities and func-

tionality advocated by this research.

221

CHAPTER 9
CONCLUSIONS

The objectives of this dissertation were to analyze CAD/CAM data
management practices, identify deficiencies, and develop improved methods for
maintaining integrated CAD/CAM data. This research produced an object-
oriented data model and software prototype system, ODM, with sophisticated
DBMS capabilities addressing the limitations of existing facilities. In this con-
cluding chapter, I first review evidence supporting the need for this research.
The next section itemizes the contributions of the research from a CAD/CAM
application perspective, and also from the viewpoint cf semantic data modeling.
I conclude with a discussion of ODM'’s limitations, its potential for future

research and development efforts, and its applicability to other domains.
9.1 Factors necessitating improved CAD/CAM data management

The proliferation of CAD/CAM application systems indicates that auto-
mation in all phases of design, engineering, and manufacturing is booming. My
interactions with Lockheed, Rockwell, and Hughes employees emphasized the
need for improved CAD/CAM data management facilities supporting diverse
application systems. The requirements analysis phase of this research revealed
inefficiencies due to the following factors:

¢ Each CAD/CAM application requires specialized input data and

generates system-specific output.

222

¢ Multiple independent data bases cause data flow gaps, and
hamper automatic translation mechanisms.

®* Manual preparation and transfer of data between applications
reduces efficiency and increases the chance of errors.

¢ Enormous amounts of redundant data and duplicate data process-
ing hinder consistency maintenance and data retrieval.

* A wide gap exists between an engineer’s view of product design
and production, and the organization of corresponding data in

today’s DBMS.
9.2 Contributions

Existing data management systems are inadequate for overcoming the
resulting inefficiencies. The research presented in this dissertation recommends
solutions for achieving effective CAD/CAM data management. Specifically, the
accomplishments of this work are the following:

®* An information management environment for interleaving
mechanical design, data enmiry, and design validation tasks.

Currently, initial data entry for a new part occurs after a design is

complete, and design validation follows data entry as an off-line

task. Design inconsistencies are not recognized until a design

and its data have been committed, at which time, a second itera-

tive pass through design, data entry, and validation is required for

comrections. Integrating these activities, first, bridges a gap

between these tasks; and second, allows design experts to select

and control the type and structure of relevant information stored

in the data base.

223

* A data model supporting a logical schema which equates with the
conceptual schema maintained by manufacturing experts. Most
data models do not directly support the conceptual view of an en-
terprise ﬁcnerated during data base design phases. In ODM, com-
plex conceptual entities and relationships can be mapped onto
data base objects, thereby, retaining the conceptual organization
for future access and manipulation.

* Data manipulation capabilities which directly support BOM pro-
cessing. The BOM organization of assemblies and parts is ubi-
quitous in the manufacturing industry. ODM directly supports
composition hierarchies and provides primitive operations for re-
trieving BOM data.

¢ Extended data types for maintaining heterogeneous data. Com-
plex combinations of graphical, geometrical, manufacturing, and
administrative data can be represented as ODM objects. Domain
object types, like extended data types, can be customized to fit
any application requiring the data as input.

* Semantic constraint facilities for maintaining the consistency of
mechanical designs. By representing semantic features and rela-
tionships, consistency checking of design criteria can be included
in the schematic description of entities. Unacceptable design de-
cisions can be rejected and redesigned early in the manufacturing
cycle before subsequent activities, like tool design, are initiated.

* A methodology for partial or total conversion to integrated
CADICAM data managemeni. A directory approach for main-

taining data sources permits the existence of multiple data bases,

224

yet, helps to conceprually centralize distributed data repositories.
This organization provides users with a starting point to begin

searching for required data bases and files.

Proof of these concepts was demonstrated by the implementation of an
ODM prototype software system. An OEL (Object Entry Language), and OML
(Object Manipulation Language) were developed for interacting with the ODM
prototype. Hierarchical and heterogeneous data types, semantic constraint
specification, and transitive closure operations are supported in the operational -
ODM prototype. Interactive sessions with the prototype exemplify the
CAD/CAM DBMS goals which were achieved.

To illustrate the practical benefits of this research in a manufacturing set-
ting, I coordinated with Hughes data management and manufacturing personnel.
To validate the utility and application of this research, I demonstrated the fol-
lowing capabilities of the ODM software system using Hughes PWA and produ-
cibility data:

¢ directory data bases integrating MCL, IGES, and PWA transfer
data

* a BOM schema reflecting the conceptual PWA and component
organization

¢ dynamic creation of new PWA and capacitor schema and data

* hierarchical constraints for PWA components

* interactive producibility checking by converting expert system

rules to ODM constraints

225

During the course of this research, 1 also investigated theoretical aspects
of object-oriented models in programming languages, data management and
knowledge representation. The data model I developed contributes to the field
of semantic data modeling with the advancements outlined below:

* An object-oriented model with explicit intensional and extension-
al semantics based on set theory and predicate logic.
* Formalisms which relate aggregation and generalization princi-

ples, and inferencing theorems derived from their integration.

* The application of meta-knowledge in DBMS schemata enabling
dynamic schema structures.
* A computer software system achieving the functionality of the

ODM theoretical model.
9.3 Limitations and future work

Throughout this document, I have suggested aspects of ODM which
would profit by additional research. To summarize, efforts focused on the fol-
lowing topics would extend the utility of ODM as a viable CAD/CAM DBMS:

® improved user interface (graphical and textual). An object-
oriented message-passing language is generally too verbose for
efficient interactivity. Graphical manipulation of icons represent-

ing domain intensions and instances is desirable.

* constraint specification languages. The underlying implementa-

tion language is currently used for representing procedural con-

straints. Instead, a language specifically suited for expressing re-

lationships and conditions over domain objects should be investi-

gated.

226

* generdlized aggregation principles. In ODM, aggregation ap-
plies only to the composition of physical parts. A natural exten-
sion of this work would consider more generalized forms of
aggregation,

* secondary storage facilities. One hallmark of generalized DBMS
is their ability to maintain large data sets efficiently in secondary
storage. Efforts in this direction must also be pursued for object-

oriented data models.

The extensions described above apply to domain independent aspects of

ODM. Additional investigation, however, can be pursued toward a better under-
standing of mechanical design and engineering, and the data management tasks
entailed by these disciplines. Insights gained by analyzing domain tasks en-
courage developments tailored specifically to CAD/CAM needs. One such task,
not addressed by this research, focuses on version control and configuration
management. These capabilities are clearly necessary in the types of manufac-
turing environments I analyzed, namely, aerospace and electronics. Also, the
developed model encourages the incorporation of domain knowledge within the
data base schema. Identifying and incorporating the following kinds of informa-
tion will further benefit designers and engineers utilizing integrated CAD/CAM
DBMS:

¢ static and dynamic properties of manufactured parts

* semantic representations of part features

* assembly and part taxonomies

* semantic models for graphical and geometrical representations

* libraries of design validation procedures

227

My review of related work indicates that corporate projects focused on
integrated CAD/CAM DBMS are inadequate. Therefore, collaborative research
and industry efforts in this direction must be encouraged. As a follow-up pro-
ject, discussions with Hughes data management personnel are continuing toward

the goal of applying ODM facilities in their production environment.

Although the main emphasis of this work is on mechanical design and
manufacturing; the developed methodology and tools for CAD/CAM data
management also apply to other domains. Disciplines involving the construction
or synthesis of physical entities can benefit from facilities for modeling BOM-
like data exhibiting the coniains relationship. Domains whose data items and
structure are dynamic over time require more robust and dynamic schemata,
such as those developed by this research. Finally, integration of heterogeneous
data types is a goal in many DBMS applications. Most enterprises must main-
tain multiple data repositories because facilities for integrating heterogeneous

data types are limited.

228

[Afs85]

[Ahr84]
[Ast80]

[BCS83]
[Bar81]

[Bir73]
[Bor79]

[Bor80]
[Bra78]

[Bra83]

(Bra85]

[Bro84]

[Can83]

References

Afsarmanesh, H., McLeod, D., Knapp, D., and Parker, A., *‘An ex-
tensible object-oriented approach to databases for VLSVCAD,”’ pp.
13-24 in Proceedings of 11th conference on very large data bases,
Stockholm (1985).

Ahrens, L., February 1984, Personal communication,

Astrahan, M.M,, ‘A history and evaluation of System R,”
RJ2843(36129), IBM Research Laboratory, San Jose, CA (1980).

BCSS design document, 1983. Boeing internal correspondence.

Barr, A. and Feigenbaum, E.A., The handbook of artificial intelli-
gence, William Kauffman, Inc., Los Altos, CA (1981).

Birtwistle, G., Dahl, O., Myhrhaug, B., and Nygaard, K., Simula be-
gin, Van Nostrand Reinhold, New York (1973).

Borning, A., ““THINGLAB: A constraint simulation laboratory,”’
CS-79-746, Stanford University, Palo Alto, CA (1979).

Borkin, $.A., Data models, The MIT Press, Cambridge, MA (1980).

Brachman, R.J., *‘‘A structural paradigm for representing
knowledge,’’ Report No. 3605, Bolt, Beranek and Newman, Inc.,
Cambridge, MA (May 1978).

Brachman, R.J., ‘“What IS-A is and isn’t: An analysis of taxonomic
lmkz;‘983 in semantic networks,”’ Computer 16(10), pp.30-36 (October
1983).

Brachman, R. and Schmolze, J., *‘An overview of the KL-ONE
knowledge representation system,”’ Cognitive Science 9(2),
pp-171-216 (1985).

Brodie, M.L.., Blaustein, B., Dayal, Y., Manola, F., and Rosenthal,
A., ""CAD/CAM database management,’”’ Database Engineering
7(2), pp.12-20 (June 1984).

Cannon, D., November 1983. Personal communication.

229

[Car79]

[Cha81]

[Che76]

[Cod71]

[Cod79]

[Cop84]

[Cur8l]

[DMD86]
[Dat81]

[Dav78]

[DeW81]

[Eas78]

[Eas86]

Cardenas, A.F., Data buse management systems, Allyn and Bacon,
Inc., Boston, MA (1979).

Chang, T.C. and Wysk, R.A,, *‘An integrated CAD/automated pro-
cess planning system,’’ AIE Transactions 13(3), pp.223-233 (Sep-
tember 1981).

Chen, P.P., *‘The entity-relationship model: Toward a unified view
of data,”’ ACM Transactions on Database Systems 1(1), pp.9-36
(March 1976).

Codasyl data base task group report, 1971, Association for Com-
puting Machinery, New York (April 1971).

Codd, E.F., “‘Extending the database relational model to capture
more meaning,”’ ACM Transactions on Database Systems 4(4),
pp.397-434 (December 1979).

Copeland, G. and Maier, D., ‘‘Making Smalltalk a database sys-
tem,’’ ACM Sigmod Record 14(2), pp.316-325 (June 1984).

Curtice, R.M,, “‘Data dictionaries: An assessment of current prac-
tice and problems,’’ pp. 564-570 in Proceedings of 7th conference
on very large data bases, Cannes, France (September 1981).

Al Trends 2(5), DM Data, Inc. (February 1986).

Date, C.J., An introduction 1o database systems, Addison-Wesley,
Menlo Park, CA (1981).

Davis, R., ‘‘Knowledge acquisition in role-based systems,’’ pp. 99-
134 in Patern directed inference sysiems, ed. D.A, Waterman,
Academic Press, New York (1978).

Baroody, A.J. Jr., *‘An object-oriented approach to database system
implementation,’”” ACM Transactions on Database Systems 6(4),
Pp.576-601 (December 1981).

Eastman, C., *‘The representation of design problems and mainte-
nance of their structure,’” pp. 335-357 in Aruificial intelligence and
pattern recognition in computer-aided design, North Holland Pub-
lishing Company, Amsterdam (1978).

Eastman, C.M. and Lafue, G.M.E,, *‘Semantic integrity transactions
in design databases,’’ pp. 39-54 in File structures and data bases
for CAD, ed. J. Encarnacao, North Holland Publishing Company,
Amsterdam (1986).

230

[Eco83)

[Enc83)

[Eps77]

[Fah79]

[Fen85]

[Fin79]

[God82]

[Gof82]

[Gra85]

[Gut82]

[Ham81]

[(Han78]

[Hes83]

Economopoulos, P. and Lochovsky, F. H., *‘A system for managing
image data,’”’ in Proceedings of 9th IFIP World Computer
Congress, Paris (1983).

Encarnacao, J. and Schlechtendahr, E.G., Computer aided design,
Springer-Verlag, Heidelberg, FRG (1983).

Epstein, R., “‘Creating and maintaining a database using Ingres,”’
Memorandum No. ERL-M77-71, University of California at
Berkeley, Berkeley, CA (December 1977).

Fahlman, S., NETL: A system for representing and using real-world
knowledge, The MIT Press, Cambridge, MA (1979).

Fenves, S.J., ‘‘Representation and processing of engineering design
constraints in a relational database,’’ pp. 343-347 in Proceedings of
COBMPINT 85 cumputer aided technologies, Quebec (September
1985).

Findler, N., Associative nerworks, Academic Press, New York
(1979).

Goldberg, A. and Robson, D., Smalltalk-80: The language and its
implementation, Addison-Wesley Publishing Company, Menlo
Park, CA (1982).

Goldfine, N., *‘Information resource management: Strategies and
tools,”’ National Bureau of Standards Special Publication 500-92,
Database Directions 111 Workshop (1982).

**Graphics kernel system: Functional description,”” ANSI X3,124-
1885, American National Standard for Information System (1985).

Guttman, A. and Stonebraker, M., ‘‘Using a relational database
management system for computer-aided design data,’’ Database
Engineering 5(2), pp.21-28 (June 1982).

Hammer, M. and D.McLeod,, Database description with SDM: A
semantic database model, ACM Transactions on Database Systems
(September 1981).

Hanson, A.R. and Riseman, E.M., Computer vision systems,
Academia Press, Inc., New York (1978).

Hess, G.J., Computer integrated manufacturing, December 1983,

Presentation at winter meeting of American Society of Agricultural
Engineers.

231

[Hoo85]

[IDM]

[Ini83]

[Ito]

[Kam83]

[Kin86)

[Kla82)

[Kat85]

(Led83]
[Lew83]
[Lil78]

[Liu]

[Liu85)
[Lor82)

[Mac80]

Hooper, R.P., ‘*An application of knowledge-based systems to elec-
tronic computer-aided engineering, design and manufacturing data
base transport,”’ Doctoral Dissertation, UCLA (1985).

IDMS: Concepts and facilities, Cullinane Corporation, Wellesley,
MA.

“‘Initial graphics exchange specification,’”” NBSIR 82-2631 (AF),
National Bureau of Standards (February 1983).

Itoh, S. and lisaka, J., An image oriented database system, IBM
Scientific Center, Tokyo.

Kamvar, E,, “‘Recognition of graphical data - A Bridge between
CAD and CAM,"”’ Doctoral dissertation, UCLA (1983).

King, R., ‘A database management system based on an object-
oriented model,”’ pp. 443-468 in Expert datubase systems, ed, L.
Kerschberg, Benjamin/Cummings Publishing Company, Inc., Men-
lo Park, CA (1986).

Klahr, P., McArthur, D., Narain, S., and Best, E., ‘““SWIRL: Simu-
lating warfare in the ROSS language,’’ N-1885-AF, The Rand Cor-
poration, Santa Monica, CA (September 1982).

Katz, R.H., Information management for engineering design,
Springer-Verlag, Berlin (1985).

Ledbetter, E.B., February 1983. Lockheed internal correspondence.
Lewis, J., November 1983. Personal communication.

Lillehagen, F.M., Modeling in CAD systems, 1978, CAD Tutorial,
SIGGRAPH conference.

Liu, D., Uiilization of artificial intelligence in manufacturing,
Electro-Optical and Data Systems Group, Hughes Aircraft Com-
pany, El Segundo, CA.

Liu, D., June 1985. Personal communication,

Lorie, R.A., *‘Issues in database for design applications,”’ pp. 213-
222 in File structures and data bases for CAD, ed. J. Encaracao,
North Holland Publishing Company, Amsterdam (1982).

Machaver, C. and Blauth, R.E., The CAD/CAM handbook, Compu-
tervision Corporation, Bedford, MA (1980).

232

[Mai84]

(McA8S]

[McC82)

[Mel84]

[Mil76]

[Min74)

[(Mor86]

[Myl180]

[Nas78]

[Nas83]
[New?78]

[Nig8s5]

[Nil80]

Maier, D. and Price, D., ‘‘Data model requirements for engineering
applications,”’ in Proceedings of first international workshop on ex-
pert database systems, ed. L. Kerschberg (1984).

McArthur, D., Klahr, P., and Narain, S., **The ROSS language
manual,’”” N-1854-1-AF, The Rand Corporation, Santa Monica,
CA (September 1985).

McCarthy, J.L., ‘*‘Metadata management for large statistical data-
bases,’’ in Proceedings of 8th conference on very large databases
(September 1982).

Melkanoff, M.A., ‘‘The CIMS database: Goals, problems, case stu-
dies and proposed approaches outlined,”’ pp. 78-93 in Industrial en-
gineering (November 1984).

Miller, G.A. and Johnson-Laird, P.N., Language and perception,
Harvard University Press, Cambridge, MA (1976).

Minsky, M., *‘A framework for representing knowledge,”” MIT Al
Memo 306, Cambridge, MA (June 1974).

Morgenstern, M., *“The role of constraints in databases, expert sys-
tems, and knowledge representation,”’ pp. 351-368 in Expert data-
base systems, ed. L. Kerschberg, Benjamin/Cummings Publishing
Company, Inc., Menlo Park, CA (1986).

Mylopoulos, J., Bernstein, P.A., and Wong, H.K.T., ‘““A language
facility for designing database-intensive applications,”’ ACM Tran-
sactions on Database Sysiems 5(2), pp.185-207 (June 1980).

Nash, J.H., *‘Graphic interaction with database systems,’’ pp. 107-
118 in 3rd International conference on computers in engineering
agd building design, Brighton Metropole, Sussex, UK (March
1978).

Nashenberg, L., November 1983. Personal communication.
Newman, N.M. and Dam, A. Van, ‘‘Recent efforts toward graphics
standardization,”” ACM Computing Surveys 10(4), pp.365-380 (De-
cember 1978).

Nightingale, C., June 1985, November 1985. Personal communica-
tion.

Nilsson, N.1., Principles of artificial intelligence, Tioga Publishing
Company, Palo Alto, CA (1980).

233

[Noc84]
[Obj84])

[Ora79]
[PDD83]

[Plo84}

[Pro81]

[Qui68)

[Ree82]

[Req)

[Sch75]

[She84)

[Shi81]

[Smi77]

[SmiB4]

Nocket, M., February 1984. Personal communication.

Objects, message passing and flavors, Lisp Language Documenta-
tion, Symbolics, Inc. (1984).

Oracle introduction, Version 1.3, Relational Software, Inc., Menlo
Park, CA (1979).

PDDS Overview, Integrated Database Team, Lockheed-California
Company, Burbank, CA (1983).

Ploufte, W., Kim, W., Lorie, R., and McNabb, D., ‘‘A database sys-
tem for engineering design,”’ Database Engineering 7(2), pp.48-55
(June 1984).

Proceedings of IFIP WG5S .2 working conference on file structures
and data bases for CAD, September 1981. Closing discussion,

Quillian, M.R., ‘‘Semantic Memory,”’ pp. 27-70 in Semantic infor-
mc;ré'gn processing, ed. M. Minsky, MIT Pressson, Cambridge, MA
(1968).

Rees, J. and Adams, N., ‘A dialect of Lisp or, Lambda; The ulti-
mate software tool,”’ in Proceedings ACM symposium on Lisp and
Junctional programming (1982).

uicha, A.G., ‘‘Representations of rigid solid objects,’’” pp. 2-78
in CAD/CAM Computer science lecture notes, Springer-Verlag,

Schroeder, J.R., Kiefir, W.C,, and Guertim, R.L., ‘‘Stanford’s gen-
eralized database system,”’ pp. 120-143 in Proceedings of 2nd
conference on very large data bases, Framingham, MA (1975).

Shephard, A. and Kerschberg, L., ‘‘PRISM: A knowledge based
system for semantic integrity specification and enforcement in data
base systems,”” ACM Sigmod Record 14(2), pp.307-315 (June
1984).

Shipman, D.W., *“The functional data model and the data language
DAPLEX,’’ ACM Transactions on Database Systems 6(1), pp.140-
173 (March 1981).

Smith, J.M. and Smith, D.C.P,, ‘‘Data base abstractions: Aggrega-
tion and generalization,”” Comvmunications of the ACM 20(6),
pp.405-413 (June 1977).

Smith, R.G., Structured object programming in Strobe, Schiem-
berger Technology Corporation, Ridgefield, CT (1984).

234

[Sno83]

[Sow84]

[Ste78]

[Ste80]

[Sto76]

[Sto84]

[Su86]

[Sut65]

[Tei85)

[Tsi82)

[U1f82a]

[U1f82b]

[U1180]

[Voel

Snodgrass, R., ‘‘An object-oriented command language,’’ IEEE
Transactions on Sofiware Engineering SE-9(1) (January 1983).

Sowa, J.F., Concepiual Structures: Information processing in mind
and machine, Addison-Wesley Publishing Co., New York (1984).

Stefik, M., ‘‘An examination of a frame-structured representation
system,’”’ HPP-78-13, Heuristic Programming Project, Stanford
University (1978).

Stefik, M.J.,, *‘Planning with constraints,”’ Report No. 80-784,
Computer Science Dept, Stanford University (1980).

Stonebraker, M., Wong, E., Kreps, P., and Held, G., ‘‘The design
and implementation of Ingres,”” ACM Transactions on Database
Systems 1(3), pp.189-222 (September 1976).

Stonebraker, M. and Guttman, A., *‘Using a relational database
management system for computer-aided design data - An Update,”’
Database Engineering 7(2), pp.56-60 (June 1984).

Su, S.Y.W., ‘“‘Modeling integrated manufacturing data with
SAM*,”’ Computer 19(1), pp.34-49 (January 1986).

Sutherland, LE., “‘SKETCHPAD: A man-machine graphical com-
munication system,”” TR 269, MIT Lincoln Laboratory, Cam-
bridge, MA (May 1965).

Tc9i<8:holz, E., CADICAM Handbook, McGraw-Hill, Inc., New York
(1985).

Tsichritzis, D.C. and Lochovsky, F.H., Data Models, Prentice-Hall,
Inc., Edgewood Cliffs, NJ (1982).

Ulfsby, S., Meen, S., and Oian, J, ‘““Tormado: A DBMS for
CAD/CAM systems,’’ pp. 335-346 in File structures and data
bases for CAD, ed. J. Encarnacao, North Holland Publishing Com-
pany, Amsterdam (1982).

Ulfsby, S., Meen, S., and Oian, J., ‘‘Tornado: A data base manage-
ment system for graphics applications,’’ in [EEE Computer graph-
ics and automation (May 1982).

Ullman, J.D., Principles of database systems, Computer Science
Press, Potomac, MD (1980).

Voelcker, H., Requicha, A., Hartquist, E., Fisher, W., Metzger, J.,
Tilove, R., Birrell, N., Hunt, W., Armstrong, G., Check, T., Moote,
R., and Sweeney, J. Mc, The PADL-1.0/2 system for defining and
displaying solid objects, Production Automotion Project, The
University of Rochester, Rochester, NY.

235

[Web83]

[Wel76]

[Wel79])

[Win75]

[Woo83]

[Zan86a]

[Zan86b]

[Zuc85]
[Zuc86]

Weber, H.,, “Object-oriented DDBS design,”’ pp. 196-221 in
Proceedings of 2nd international conference on databases, ed. S.M.
Dean, Wiley Heyden, Cambridge, England (1983).

Weller, D. and Williams, R., ‘‘Graphic and relational data base sup-
port for problem solving,’” in Proceedings of 3rd annual conference
on computer graphics. interactive techniques and image process-
ing, Philadelphia, PA (1976).

Weller, D., Sofiware support for graphical interaction, 1BM
Research Laboratory, San Jose, CA (October 1979).

Winston, P.H., The psychology of computer vision, McGraw, Inc.,
New York (1975).

Woo, T.C., *‘Interfacing solid modeling to CAD and CAM: Data
structures and algorithms for decomposing a solid,”” Technical Re-
port 83-6, University of Michigan, Ann Arbor, MI (1983).

Zaniolo, C., Ait-Kaci, H., Beech, D., Cammarata, S., Kerschberg,
L., and Maier, D, ‘‘Object-oriented database systems and
knowledge systems,”’ pp. 50-65 in Exper: database systems, ed. L.
Kerschberg, Benjamin/Cummings Publishing Company, Inc., Men-
lo Park, CA (1986).

Zaniolo, C., “‘Prolog: A database query language for all seasons,”’

pp. 219-232 in Expert database sysiems, ed. L. Kerschberg,

?legn'gminlCununings Publishing Company, Inc., Menlo Park, CA
).

Zucherman, M., June 1985, March 1986. Personal communication.

Zucherman, M. 1, A knowledge base development for producibility
feedback in mechanical design, Masters thesis, UCLA (1986).

236

APPENDIX A
ABBREVIATIONS AND ACRONYMS

Al Artificial intelligence

APPAS Automatic Process Planning and Selection
BCSS Boeing Computing Support System

BOM Bill of materials

B-rep Boundary representation

CAD Computer-aided design

CAE Computer-aided engineering

CAM Computer-aided manufacturing

CCA Computer Corporation of America
CCDBMS CAD/CAM DBMS

CIMS Computer integrated manufacturing system
CNC Computer numerical control

CPL Computerized Parts List

CSG Constructive solid geometry

DBA Data base administrator

DBMS Data base management system

DDL Data definition language

DML Data manipulation language

DNC Direct numerical control

E-R Entity-relationship

237

FMS Flexible manufacturing systems
GFM Geometric product model

HICLASS Hughes Integrated Classification

IDB Integrated Data Base

IGES Initial graphics exchange specification
KBMS Knowledge base management system
MCL Master Component Libraries

MML Model manipulation language

NC Numerical control

ODM Object Data Model

OEL Object entry language

OML Object manipulation language

PCB Printed circuit board

PDDS Product Design Data System

PF Producibility Feedback
PIR Production Inspection Record
PL Parts List

PWA Printed wiring assembly

PWB Printed wiring board

SAM Semantic Association Model

VHDL VHSIC Hardware Description Language
VHSIC Very high speed integrated circuits
VLSI Very large scale integration

238

APPENDIX B
OML SYNTAX

239

Defining intensions

{send db def-intension <intension> <opt-props>)
(send <superpart-intension> def-subpart <intension> <opt-props>)
(send <superclass-intension> def-subclass <intension> <opt-props>)

(send <superpart-intension> def-subpart-intension <intension> <opt-props>)
(send <superclass-intension> def-subclass-intension <intension> <opt-props>)

Defining instances

(send <intension> def-instance <instance>)

(send <superpart-instance> def-subpart <instance>)

(send <intension> def-subpart-instance <instance> <superpart-instance>)
(send <superpart-instance> def-subpart-instance <instance> <intension>)

(send <superpart-intension> set-subpart-qty <subpart-intension> <qty>)
(send <superpart-intension> get-subpart-qty <subpart-intension>)

(send <superpart-instance> set-subpart-qty <subpart-instance> <qty>)
(send <superpart-instance> get-subpart-qty <subpart-instance>)

Querying intensions and instances

(send db is-intension? <obj>)
(send db is-instance? <obj>)

(send <intension> get-specializations)
(send <intension> get-all-specializations)

(send <intension> get-generalizations)
(send <intension> get-all-generalizations)

240

(send <intension> get-subparts)
(send <intension> get-all-subparts)

(send <intension> get-superparts)
(send <intension> get-all-superparts)

(send <intension> get-instantiations)
(send <intension> get-all-instantiations)

(send <instance> get-parts)
(send <instance> get-all-parts) -

(send <instance> get-assemblies)
(send <instance> get-all-assemblies)

(send <instance> get-intension)
(send <instance> get-all-intensions)

(send <intension> is-specialization? <intension>)
(send <instance> is-instantiation? <intension>)
(send <intension> is-subpart? <intension>)
(send <instance> is-pan? <instance>)

Defining and querying properties

(send <intension> def-property <propnames)

(send <intension> get-properties)
(send <instance> get-properties)

(send <intension> get-all-properties)
(send <instance> get-all-properties)

(send <intension> is-property? <propname>)
(send <instance> is-property? <propname>
Setting and retrieving property values
(send <intension> set-property-slot <propname> <slotname> <slotvalue>)

(send <intension> get-property-slots)
(send <instance> get-property-slots)

(send <intension> get-property-slot <propname> <slotname>)
(send <instance> get-property-slot <propname> <slotname:>)

241

(send <instance> set-property-value <propname> <propvalue>)
(send <instance> get-property-value <propname:)

(send <intension> get-all-instances-where <propname> <propvalue>)

Displaying intensions, instances, properties

(send <intension> show-self)

(send <instance> show-self)

{send <intension> show-self-in-detail)

(send <instance> show-self-in-detail)

(send <intension> show-property <propname>)
(send <instance> show-property-value <propname>)

Using extensions

(send <intension> get-extension)
(send db is-extension? <obj>)

(send <extension> get-members)
{send <extension> get-all-members)

(send <instance> get-extension)

(send <instance> get-all-extensions)
(send <extension> get-subextensions)
(send <extension> get-all-subextensions)

(send <extension> get-superextensions)
(send <extension> get-all-superextensions)

{send <instance> is-member? <extension>)

(send <extension> is-subextension? <extension>)
Defining relations

(send db def-relation-intension <relation> <opt-roles>)

(send <relation> def-argument <role>)
(send <relation> set-argument-lambda <role-name> <lambda-exp>)

(send <relation> def-relation-instance)
(send <relation-instance > set-argument-value <role-value>)

(send <relation-instance> def-relation-instance

242

<argument-name/argument-value pairs>)

Quering relations
(send <relation> get-arguments)
(send <relation> get-argument-lambda <role>)

(send <relation> get-instantiations)
(send <relation-instance> get-argument-value <argument>)

243

APPENDIX C
OUTPUT OF OEL PARSING

244

(send db def-intension VEHICLE)

(send db def-intension DWELLING)

(secnd VEHICLE def-subclass-intension MOTOR-HOME)
(send DWELLING def-subclass-intension MOTOR-HOME)
(send VEHICLE def-subclass-intension AUTOMOBILE)
(send AUTOMOBILE def-subclass-intension HONDA)
(send AUTOMOBILE def-subclass-intension CADILLAC)
(send db def-intension ENGINE)

(send AUTOMOBILE def-subpart ENGINE)

(send db def-intension BODY)

(send AUTOMOBILE def-subpart BODY)

(send db def-intension FENDER)

(send BODY def-subpart FENDER)

(send ENGINE def-subclass-intension HONDA-ENGINE)
(send MOTOR-HOME def-instance MOTOR-HOMEQS)
(send CADILLAC def-instance CADILLAC06)

(send HONDA def-instance HONDAQ3)

(send HONDA-ENGINE def-instance HONDAQ3-ENGINE)
(send HONDAO3 def-subpart HONDAQ3-ENGINE)

(send BODY def-instance HONDAQ3-BODY)

(send HONDAO3 def-subpart HONDAO3-BODY)

(send FENDER def-instance HONDAO3-FENDER)

(send HONDAO03-BODY def-subpart HONDAO3-FENDER)
(send BODY def-instance CADILLAC06-BODY)

(send CADILLACO06 def-subpart CADILLAC06-BODY)

245

APPENDIX D
BILL. OF MATERIALS DATA FOR PWA M87706172

246

Lzo-
Leo-
Lo
Leo-
Leo”
Lo’
Lzo-
L20"
L20°
L2o0’
Leo”
Lzo’
Leo
Lzo°
20
L20°

LZo*
Leo’
Leo’
Leo-
Lzo"
Leo”
Leo-
Leo’

aQuat

860"
860"
860°
860°
860"
860"
860°
860"
860"
860°
860°
860°
860°
860"
860°
860°

ot
opt”
ort
oT”
orL”
060°
060"
060"

YIa

18"
8Z°
82"
182"
182"
182"
182"
182"
182"
18e°
182"
182"
182°
182"
18z”
18e”

993-0lL
8T-0l

o6t
06€"
06t”"
06€"
06€"
091"
091"
091

N3T

6bOv
(321) §
6bOV
6v0Y
6¥0¥
6OV
6¥0¥
6bOv
6vOVv
60V
6v0V
6¥0Y
60OV
60V
6b0OVY
6b0OY

6102
L00D

£00¥
toov
£00v
€00V
€00Y
T00¥
100V
100¥

it}
g9I1

OC o0 O0COQCOO0C OO0 MMEuMMYOOOODODODOOOLOCOOOOCO

0

"0 000°0 062°0 006°E SZZ°0 1£04
‘0 00070 052°0 O0SE°'T S2E°71 6204
‘0 000°0 0s¢'0 0021 SZ2E°1 8zod
] 0600°0 082°0 0S0°T SZe°1 Lzod
‘0 000°0 052°0 006°0 SZE°1 920d
"0 0000 05Z°0 0SL°0 SZ2€°1 veod
‘0 00070 0§2°0 009°0 G2t°'1 1204
"0 0000 0sZ°0 0Sk'0 G2E°1 6104
‘0 000°0 082°0 00E°0 SZ£°1 L10¥
0 000°0 0620 00€E°C GSL9°0 b10d
"0 000°0 0S2°0 O0SF'0 SL9°0 e10d
"0 000°0 0sZ°0 009°0 SL9°0 zi0d
"0 00070 082°0 0SL°0 SL9°0 6004
‘0 0000 082'0 006°C SL9°0 Lood
Y 000°0 0SZ°0 050771 SL9°0 5004
"0 000°0 06¢°0 00Z2°1 SL9°0 2004
"0 000°0 60T°0 OOL"T 00E"2 FrOd
oLe 00T°0- Q0T°0 CSL"¥ ocE"¥ 2000
‘0 000°0 SL0°0 0SS°€E 00T ¥ 1000
0 00k 2 £9€°G 1004
0 05970 BET'O eood
0 0S8 ¥ €9€°S 200d
‘06 0se°0 000°0 o©O0b'1 gZ1°s L00D
‘06 0S€°"0 000°0 o0O0£°T 056°¥ 9000
"06 0SE"0 000°0 SL0°0- 621°S S002
"06 0SE"0 000°0 O00T"E S29°1 2000
"0 00070 0Se°0 ooOL"1 S?1'¢e 1002
"0 000°0 0SE°0 00671 SZ1°E 8000
‘0 000°0 062°0 O0S¥'0 OSL°Z ¥002
‘0 000°0 002°0 08S°1 GZE'E £002
NIHO 440X 230X OY¥OoX odoX 9Isaa

Cict|

WLEQTOLO0YDY
HLEOTOHLOWON
HLEOTOL0YDY
WCEOTOLO0HEOY
HLEOTOLOYOd
HLEOTOLOWOY
WCEOTOLOUOY
WCLEQTOLOHDY
WLEOTOLOYOY
HCEOTOLO0WDY
RCEOTOLOYEIY
WCEOTOLO0WOE
HLEOTOLOYWDY
HLEOTOLO0WOA
HCEOTOLO0YWOY
HCEOTOLOWOY
HMS00-£/STO6ER
LILENTXINYL
VZTTINZXINNL
9€-¥-19/20E5SK
0Z-¥-19/20€SSH
¥2-1-19/C20LSSH
169Z-%6/58609H
T1692-¥6/S8609M
1692-p6/58609R
T692-76/58609H
1692-¥6/58609H
0BEL-F6/SB609K
OBEL-¥6/S8609W
0BEL-V6/58609H

HIEWNN
lyvd

vl vl e e el -

ALD

247

L2o’
L20°
Leo0’
Lzo-
Leo’°
Lo
Lio-
Lzo-
o
L2o0-°
Lzo-
Lzo°
Lzo-’
Lzo-
Leo’
L2o”
Leo-
Leo-
Leo*
Leo”
Leo-
L2o°
Lzo"
Lzo-
L20°
L20°
L2o-
L2o0°
Lzo-
Lo’
L2o-
Lzo-
Lz0°
LZo°
Lzo-°

860"
860"
860"
860"
860"
860"
860°
860"
860°
860°
860°
860°
860"
860°
860°
860°
860°
860°
860"
860"
860°
860"
860"
860"
860°
860°
860°
860"
860"
860"
860"
860"
860"
860"
860°

1: T
182"
182"
182"
182"
182°
182"
182"
ez’
182"
182°
18e°
182"
182"
18z
182"
182"
182
182"
182"
182"’
182°
182"
182"
182"
I8¢°
182"
182"
182"
182"
182"
182"
182"
18Z°
182"

(310}
6bOV
1140
6vov
60V
L3 A0}
6r0OVY
660V
&R0V
60V
6v0VY
6v0¥
6V0V
6vO0V
6¥0V
6¥OV
6bhOY
6¥OY
6¥0¥Y
6OV
6FOV
6bOY
6rOV
(3 2+ §
670V
6¥0V
1140 4
6P0V
6¥0V
1300 4
6F0V
6¥ 0¥
6y0Y
6p0V
6bOV

OO0 OCODODO0OOCO0DO0O0OO0OCOOCDOLOO0OCO0OO0O0DO0O0CO0OO0DO0ODOOO0ODDOOCOCR

‘0
Y
‘0
‘0
"0
"0
‘0
‘06
‘0
‘0
‘0
‘0
‘0
‘0
"0
‘o
‘0
"0
‘0
"0
"0

‘0
"0
‘0

‘0
‘0
"0
‘0
"0
"06
“06
‘06
‘06

0000
00070
000°0
000°0
000°0
00070
000°0
05Z°0
000°0
0006°0
00070
000°0
000°0
00070
000°0
00070
00070
0000
000°0
000°0
000°0
000°0
000°0
0000
000°0
000°0
00070
Q00°0
000°0
000°0
000°0
0sT o
0620
052°0
0820

0SZ°0
05270
06Z°0
05270
05270
052°0
0szZ°o
000°0
0620
0s2°0
0sZ- o
0sZ°o0
06270
052 0
0sZ°0
0se°o
0s2°0
0se¢ 0
0s2°0
0sZ o
0§2°0
0sZ0
0s2°0
0sZ o
0sZ°0
0520
05¢°0
05270
0sZ°0
052°0
0s2°0
000°0
00070
00070
000°0

ooe" b
oSk P
009°b
OSL"¥
006" ¢
050°S
00Z°S
628°1
T4 2
YA DS 4
069°¢
008°¢
0S6°€E
1A
SLEF
SLb°S
009°S
STLY
SLe" ¥
sZ0°S
SLI'S
See’S
sZe° ¢
000° €
osL ¢
05¢°¢
TR A
ooL"T
00s°1
SLZ°1
SZT°E
SZ0"0
s20°0
52070
520°0

G260
52670
52670
ST6°0
§26°0
§26°0
G26°0
SL6°1
G20°¢
G20°€
sZ0°¢€
S%0°¢€
S20°€
S20°¢E
S20°E
ST0°E
S20°€
S20°€
c20°¢
S20°E
2Z0°E
S2Z0°¢E
SLT"?
SZ8°¢E
sZ8°¢
S¢8°E
SZ8°¢E
SLT ¥
SL1°v
SLT"P
SZ8°E
SLT Y
CTA
ooL"¥
066" ¥

2904
1904
0904
6504
8504
Lsod
9504
Syoy
S204
£zod
Zzod
0zod
at1o0d
910d
ST0¥
110d
otod
800d
9004
po0Od
£004d
1004
1504
6£0d
geod
Leod
ceod
sS04
pSod
£S04
8rod
9€0d
SE0d
¥tod
£E0d

RLTT1S9L0¥0d
W 11990040
RLTTSOL0WOY
RLTISOL0WDY
RLT1S9L080d
WLTT1S9L0EDd
WLTTSOL0MOE
HLT1S9L090Y
ROTTSOL0MDY
RL11S9L0480d
HCT1SDL09DY
NL1169L080d
NLTTS2L0U0d
ALCTTSOL0EY
WLTTISOLOYDY
RLTTS9L080d
RLTTSOL0MDE
RLTTSOLOEN
ROTTSOL0UDY
RETTISOL0dY
WLTTSOL0WOY
RLTTSOL0dd
RLOTSOL0EOY
RCT6EDL0WDY
NLT6E9L080d
RLT6EDLOEY
WO T6EDLOEDY
WOE9€9L 08D
WCEIEDLOEDY
NLEIEDLOUDY
RLOZZTIOLOUDE
RCLEOTOLOEDY
HLE0TOL0UON
HLEOTOL0EON
WCE0TOL0MDE

248

220°
zz0°
220°

LZo°
Leo”
L20°
Lzo-
Leo°
Lzo°
s¥o-
Lzo*

(1120 B
0ET”
0ET"

S9T”
S91°
s9T1°
S9T-
69T°
G9T°
o
860"

oog* geE0vY
00" 8EQY
00gE" 8t0v
00I-0L 0€E0D
00T-0L 0€02
dIg NId-¥T Zood

dId NId-¢1 2004
dId NId-¥1 2004
d41Q NId-¥1 2004
dIg NId-FT 2004
4Id NId-p1 2004
dIg NId-¢#T1 2004

LER” ¥SOV
Ler” ysov
LEY® ¥SOV
LeEy: ¥Sov
Ler” rsov
LEF” SOV
£6S° 150¥
182" 6h0OV

o

OO0 0 000 OO mreemrmMreMreeo«d~0NnNOo OO0

oLe
‘06
08T
081
08t
08t
oLe
oLz
"06
oLz
‘06
oLz
0Lz
‘06
‘06
"06
"06
‘0

‘0

‘0

0

‘06
‘06
‘06
‘0

0sE"C-
0GE°0
000°0
00070
000°0
000°0
000°0
00t "0~
0StE"0
055°0-
0sE’0
ooE"0-
00E°0-
00E"0
00E"0
00E°0
00eE°0
00070
000°0
000°0
000°0
0SE"0
0SE’0
osk°0
000°0

000°0
000°0
00E°0-
00E "0~
00€E"°0-
01T°0
o110
0610
051°0-
00E°0
0sT1°0-
05170
0S1°0
0S1°0-
0S1°0-~
0ST°0-
0sT°0-
05E°0
0sE’C
0se’0
0GE"0O
00070
000°0
000°0
0582°0

0S9°¢€
066°¢
00Z°0
SLETO
08570
1€ 1
£1Z°¢€
001°¢t
006" ¥
SLT'S
009°¢t
0G9° ¥
00§°S
SL6°t
SL6'T
SLétZ
SL6°e
056°0
SLE'T
SL9°0
SLT°1
sZL e
008°0
0892
10 B J

SLT"S
cLe"?
000°¥
000" ¥
000"
Log 2
LEE"C
SLT'e
sz ¢
SLO*0
s21°¢
A4
CTAE4
0s¥°1
§29°0
0sS0°1
00¥°0
T4
0S0°€
T4 A4
SZ1°¢
SL6°1
00€"2
009°F
G26°0

FAHIL. T,
10049A
£004D
004D
100480
20049Y
1009Y
oton
2000
6000
8000
<soo0a
1000
Loon
000
yoon
£00a
Thod
£bod
okod
Z50d
o£0d
crod

Loy
€90d

H6 TOENTXINYL

g6 TOENTXINYL
59PN IXINYL

9S8 FNTXINNG
S8 PN IXINYD
¥og¥0101/0TSBEN
VYOHYOTOT/0TSEEN
c0096221
0096221
LEEEBTZT
g3dT0ETT/0TSEENH
g2d660010/01S8EH
928600T0/0TS8ENR
HOHT0T00/0TSHEN
€02T70700/01S8EH
AOd10T00/0TS0EN
g08T0T00/01S8EN
WIEG6 6 PHOSONY
RAZ66yHOIONY
HAZTOEHO9ONY
WAE00ZTHOIONY
WIT8TTHO9ONY
H3TLOTHO9ONY
WCTRZOZEUDOd
WCTTSOL0EIT

m

N N

el el et e W

249

APPENDIX E
COMPONENT PHYSICAL DATA FOR PWA M87706172

250

1/8006€-4-TIH L2070 B
1/8006£-4-TIN L2070 @
1/8006€-¥-TIN L20°0 @
¥6/58609-0-TIM L20°0 @
¥6/58609-0-TIN L2070 @
¥6/68609-0-TIH ([Z0°0 @
¥6/868609-D-TIR [20°0 @
¥6/98609-0-TIR LZ20°0 ¥
r6/G8609-O-TIN LCO'0 @
¥6/58609-0-TIR LZ0°C 8
¥6/58609-0-TIR (200 B
815/00561-S-TIK PED"O @
G52/00S6T-S—TIK 120°0 @
81T/0056T-S~TIR Z20°0 ¥
811/00S6T-S-"1IN 220°0 @
81T/00G6T-S-1IN 2Z20°0 B
STT/00G6T-S-TIN EE0°0 @
STI/0056T-S—TIH E€EQ"0 ¥

#8czoo @

dezo’'0 @

Bezo'0 @
ETT/01S8E-S-TIR €20°0 ¥
101/01S8E-S-TIK €20'0 &
10T/0168£-S-TIN €20°0 @
0T10/0158€-S-TIK €Z0°0 @
0TO0/01SBE-S-IIK €20°0 @
100/0158£-5-1IN £20°0 @
100/0158E-S-TIH €20°0 @
T00/01S8€-S-TIH €20°0 @
T00/0TS8E-S—TIN €20°0 @

NOIIWDIAIDAEdS dvdT ‘I0L
ASVULITIH

86070
860°0
860°0
1] A)
or1°0
o¥1-0
ovi-o
1] v
060°0
060°0
060°0

]

]
0ET" O
0ET"0O
0ET"0
G92°0
69270

oI OO

YIa

18270
1870
182°0
06€°0
06€E°0
06€E°0
06€°0
06E°0
0910
09170
091°0
93-0L
81-01
0oe°0
00£°0
00t"0
09F°0
09F°0
YYI00-H
WVI00-H
OVTO00-K
DNTOO-H
6601
6601
YVYI00-H
WYY T00-H
YNI00-H
YVYI0O-KW
YYT00-H
YYT100-K

N3

L0¥Dd
L0¥90Y
L0d0d
b TdND
PTENO
b TENO
¥ THND
¥ T
TTHMD
TTYMD
TTY¥ND
99-0L
81-01
20doI1a
coaol1a
<0acIa
S0401d
S0Q0Id
¥1dId
§1dId
¥2dIa
91dId
66-0L
66-0L
r1d41qQ
¥1d1qQ
v1dIa
r1dIqa
P1dI1d
p1dIq

Eict.]
qgI7

e el M e NS A 0D O O0O00MMOO0O0O00 000000

gtel

"0 000°0 05Z2°0 ©OOE'0 SL9°0 PT0W HLE0T19L0WOd
"0 000°0 0S2°0 OSP'0 SL9'0 €TOW NLEOTHL MDY
‘0 000°0 0SZ°0 009°0 SL9°0 Z2To0d RLEOTOL0YDYE
06 0SET0 000°0 ©COP"1I SZI'S LOOD 1692-%6/S8609K
“06 0SE'0 000°0 00E'T 0S6°F% 900D 169Z-#6/S8609H
"06 0SE"0 000°0 SLO0°0- SZI°S S00D T1692-#6/G8609H
‘06 0GE"0 000°0 ©OOT°E SZ9°T 200D T169Z-F6/S8609W
‘0 000°0 OSE"O OOL'T S2ZT°'t 100D T69Z-#6/G8609H
‘0 000°0 OSE°C 006°% GZI'E 800D 0BEL-¥6/SB609H
‘0 000°0 0SZ°0C OSP'0 0SL°Z #00D OBEL-Y6/G8609H
‘0 000°0 002°0 O0SS°'T GZE'E EO00D OBEL-P6/SB609W
‘0L 00T°0- OOT°0 OSL'F OO0E'F 200D LILENZXINYL
"0 00070 G80°0 0SS'E 060°F TOOD VWZZZZNZXINYCD
"08T 000°0 00E°0- 00Z2°'0 O000°F EOOUD HSOPNIXINVC
081 00070 00E"0- GLE'O 000'F 200480 HSGPNIXINYC
‘081 000°0 OOE"O- 0SS°0 000°F TO0MD HSHEPNIXINWCL
‘0LT O0SET0~ 000°0 0G9°¢ GLI'S Z00YA HETOENIXINYL
06 0S£°0 000°C 0S6°Z SL8°F T00YA H6TOENTIXINVCL
"OLZ Q0E°0- OST°0 O00I'€E SLT'E 010N 50096221
"06 05£°0 O0ST°0- 006°F SZ1°C 2o00n ¥009622Z1
‘0L 086°0- 00E°0 SLT°S SLO°O 6000 LEEESZIT
06 O0SE'0 OS1°0- O009°t SZI"Z 8000 TOETL/OISHEN
‘0 006°0 OT1°0 S22°T OTI8°C <T00WVY PYOTOT/OTISBEW
"0 000°0 OTT"0 ©OTIZ°€¢ S2E'Z 100d4¥ POTOT/OTSBEH
“0LZ 00£E°0- O0ST°0 ©0G9°% GS2S°2 G000 600T0/01S8EW
"OLE O00E°0- OST0 00S°S 6287 1001 600TO/OTSBEH
‘06 00E"0 OST"0- SL6°T OS¥'T Loon TOTOO/O0TSBER
‘06 00E°0 0ST°0~ GL6°T G290 900n TOTOO/OTSBEW
‘06 00E*0 OST°0- SL6°2 0S0°T ¥0ON TOTOO/OTSBEW
06 0CETO 0ST°0- GL6°Z 00F¥"0 €00n TOTOO/OISBEN
N340 340X 430X 990X SdOX 91s3d YIEHON

J34 g

251

1/8006€~4~TIH
1/8006€-d-TINW
1/8006€-9-TIN
1/8006E-4-TIN
1/8006€-4-TIN
1/8006€-Y-TIN
1/8006e-d-TIK
1/8006€-49-1IR
1/8006€-4-TIR
1/8006£-4-TIH
1/8006€-4-TIH
1/8006€-4—1IN
1/8006€-4-TIR
1/8006€-d-TIKH
1/8006E-4-T1IW
T/8006€£-4-TIH
1/8006€E-4-"TIR
1/8006€-4-TIN
T/8006€-4-TIN
1/8006E-9-TIW
1/8006€-3-TIN
T/8006€-d4-TIN
1/8006€—4-TIN
1/8006E-4-TIR
1/8006€-4-TIR
1/8006E-4-TIR
1/8006E~4-TIH
1/8006€—d-TIR
1/8006€-4-1IKH
1/8006€-4~-1IR
1/8006€-9-"1IW
1/8006E-d-"TIR
1/8006E--TIH
1/8006€-4-TIW
1/8006€-d-TIN

Leo0
L20°0
L20°0
L20%0
L20°0
Lz20°0
L2070
L2o"o
IRA
LZo"0
Lzoo
Lz0°0
LZo'0
Lo o
Lt20°0
L2o0°0
L20°o0
L20°0
Leoo
L2o"o
L20°0
LZ0°0
L2000
L20°0
L20°0
L20°0
LZ0'0
Leo"o
L2z0°0
Lzo’'o
L20°0
L2070
LtZ0°0
L2070
L2o"0

OO PTOTOIOOTITOOTIIITOTIRPITIIIAAIIDD D

860°0
860°0
860°0
B60°0
860°0
860°0
860°0
860°0
860°0
860°0
86070
860°0
860°0
860°0
860°0
86070
860°0
860°0
860°0
860°0
860°0
460°0
86070
860°0
86070
860°0
860°0
86070
860°0
860°0
860°0
86070
86070
860°0
BE0°0

182°0
182°0
182°0
182°0
182°0
182°0
18¢°0
182°0
18270
18270
18270
18270
18270
182°0
18270
182°0
182°0
18270
182°0
182°0
182°0
182°0
18270
182°0
tg8Z- 0
18270
182°0
18270
18270
182°0
182°0
182°0
18270
18C°0
18270

L0404
L0¥dd
L0d0d
L0¥0d
L0¥od
Lodod
Lo¥dH
L0490d
L0¥0d
L0¥Od
L0Ydd
Lodod
L0dod
L090d
L0304
L0904
L0490y
L0udy
L0¥dyd
L090d
L0904
L0dOd
Lo¥od
L0¥od
L0¥od
L0804
L0d0Y
L0dod
L090d
404904
LMD
Loddd
Logdyd
Lo
L0904

O QOO LOOO0OO0LODODOOCODCOO0DOOLOOOO0DD0OOOO0OODOC

‘06
‘06
“06
‘06

(=~ =~ 4

000°0
000°0
00070
000°0
000°0
000°0
000°0
00070
000°0
00070
000°0
000°0
0000
000°0
000°0
000°0
000°0
000°0
000°0
000°0
0000
052°0
0s2°0
0sZ°0
0sZ 0
000°0
000°0
000°0
00070
0000
000°0
000°0
000°0
000°0
c00°0

052°0
0sZ 0
062°0
08270
052°0
06270
0sZ°0
065270
05270
0sz°0
05270
0se°o
0s¢°0
0s2°0
06270
0sZ 0
0s2°0
05Z°0
0520
052°0
052°0
000°0
00070
00070
000°0
052°0
062°0
05270
052°0
0sZ°o
052°0
08270
0seZ o
98270
0520

SLS* ¥
059°¢
008°E
0s6°€
T4
sLe'
SL¥°S
009°4
SCE’S
gez°¢
000°¢€
osL°2
0se°t
72 A4
00L"T
00S°1
ste°1
SZ1°¢
0sL0
0060
050°1
§20°0
520°0
§20°0
S20°0
006°¢
0se°1
0021
050°T
0060
osL’o
009°0
002°1
0S¥ 0
00€E°0

S20°€E
I TAVIE S
SC0°E
S20°€
SC0°E
GZ0'E
GZ0'E
SZ0°€
S20°€E
SLT"¥
§%8°¢t
sZ8°¢t
GZ8°¢t
174
SLT"P
SLT"¥
SLT°¥
sZ8°¢e
SL9°0
SL9°0
SL9°0
sLey
sesr
ooL ¥
0s6° ¥
AT A A
§2¢°T
g2e°1
L T4 0
gZe"1
T4 ¢
s¢t°1
SL9°0
ste" 1
se¢e"1

£208
2zZod
0zZod
8104
910y
stod
TToyd
o109
To0d
1504
6E0Y
ee0d
LEOY
Ze0d
5504
psod
€508
8v0d
600d
L00Y
sooy
sty
stod
bEOY
EEOY
Te0d
6204
8zod
Loy
920d
| r4ul]
1204
2004
610y
Ltod

AL TTSOL 0O
RETTSOLOYOY
WCTTSOL0YOY
WOTTSOLONOY
WO TTSOLOYDY
ROTTSOL0UDY
RO TTSOL 0D
ROTTSDLOE0Y
HOTTSOLOYOY
RLOTS9L0¥DY
WO T6EDL0UDY
RPT16£DL0UDY
WLT6€9L0EDY
WLT6€9L0UY
RLEIEDLOUNY
HCEIEDLOUDY
WOE9IEDL OUOY
RLOZZOLOWDYE
HCE0TOLOUDY
HCEOTOLOUOY
RLEOTOLOUDY
RLEOTOLOEDYE
WLEOTOLOUDY
WLEOTOLOUDY
HLEOTOLOUDY
RCEOTOLO¥OY
WLE0TOLOUOY
RCEOTOLOYDY
HLEOTOLOYOY
RLEOTOLOYDS
RCEOTOLOENS
RCEOTOLOUDY
HLE0TOLOYY
ROEOTOLOEDY
RCEOTOLOY¥OY

252

£/281S5-49~TIR
€/28TS5~U-TIN
£/281S5-4-TIN
£/8006E-4-TIW
1/8006€-Y-TIN
1/8006€-4-TIH
T/8006€~9-TIN
1/8006E-4-TIN
1/8006€-4-TIN
T/8006€-4-TIN
1/8006€-4-TIH
1/8006E-¥-"TIH
1/8006~4-1IN
1/8006E-¥-"TIH
1/8006€~4-"TIH
1/8006E—4-TINW
1/8006E-4-TIH
1/8006E-4-TIN

L20°0
L300
L2070
S¥0°0
L20°0
L20°0
L2070
L20°0
{200
L2070
LZo0
L2070
L20°0
L20°0
L20°0
Lo 0
Leoo
LZ0°0

PP RRIIIOOIIIIIIDS DR

S81°0
S91°0
§9T1°0
orZ 0
860°0
86070
860°0
860°0
860'0
860°0
860°0
860°0
86070
86070
860°0
860°0
860°0
860°0

LEYO
LER O
LER'O
€65°0
182°0
182°0
182°0
182°0
182°0
182°0
T182°0
18270
18270
182°0
182 0
182°0
182°0
18270

090NY
090Nd
090ONY
[4%. 0. |
L0¥OY
L0490y
L0odO¥
L0804
LoYdd
L0404
4004
L0dDy
L0d0d
L0¥Dd
L0940
L0"9Dd
Lo¥dd
L0dod

C00DO0O0ODO0OO0CO0OO0OODOO0OODOOOO

‘0
"06

“06

000°0
0se°0
0SE€"0
0s¥°0
000°0
ooo°o
000°0
000°0
000°0
000°¢
000°0
006°0
000°0
000°0
0s¢ 0
000°0
000°0
00070

0sE"0
00070
000°0
0000
05Z°0
052" 0
0sZ° 0
05270
0s2°0
08270
052°0
052°0
0sZ°0
05Z°0
000°0
0sZ°0
0sZ°0
0sZ°0

SLT'T
seL"?
008°0
0s9°2
SZLF
0ST P
ooty
osk°b
009° ¥
SL8" b
osL ¥
006° ¥
0s0°¢S
00Z°%
Ge8°1
§20°¢
SLTS
114 A J

S2T1°E
SL6°T
00€E°2Z
0097
SZ0°€E
gZ6°0
52670
65Z6°0
§26°0
SZ0°€E
§26°0
§¢6°0
§26°0
§¢6°0
SL6°1
§20°¢€
520°¢
520°¢

504
oeod
Zrod
Lv0d
8004
€90y
Z90d
1904
0904
900d
6504
850d
Lsod
9504
qvod
00y
€004
sZoY

HAE00ZHO9ONY
HAT8TTHO9ONE
RATLOTHOIONY
RLT#Z2928u0Y
WL11S9L080d
WCTTISOL0UDY
RCTTS940d40d
WOTTSOLO0MDY
WCTTISOL0UOY
HOTTISOL0WOY
ROTTISOLOYOY
NOTT1S9L080d
NCTTSOL0MDY
WCT1T159L0W0d
RLTTS2L0U0Y
RLTTISOL0¥OY
RL1159L04904
RLTTSOL0WOd

253

APPENDIX F
COMPONENT ELECTRICAL DATA FOR PWA M87706172

254

1/8006€-d~TIH
T/8006€E-4-TIH
1/8006€-¥-T1IH
1/8006€-d-TIH
1/8006€-4—TIR
1/8006€-4-TIN
T/8006€-4-TIH
T/8006€-d-TINH
T1/8006E-4— 1IN
1/8006E-4-TIN
1/8006E—4—1IR
T/8006E-4—"1IH
1/8006E-8-1IH
1/8006€-4-11IK
1/8006€-¥-"1IKH
1/8006€-4~-T1IH
€/ST160E-Y-T1IR
815/0096 T-S-TIR
§22/00661-S-TINH

¥6/58609-0-TIH
¥6/68609-0-TIKH
¥6/58609-0-1IK
¥6/56609-0-TIRH
¥6/58609-0-1IW
¥6/58609-0-1IH
¥6/58609-3-1IK
¥6/58609-0-"1IKH

NOIIVYOISIO3ds
AMVLITIH

6b0Y
6bov
6vOV
6FOY
6v0Y
6b0¥
6bOV
6kOV
6OV
6b0V¥
(3400
6¥0Y
6bovY
6¥OV
6b0OY
6p0OV

6102
L0022

€00V
€00vY
€00V
EOOY
EOOV
To0V
100¥
100¥

gI1

MB/T
My/1
My/1
ME/T
Mp/1
M¥/1
MF/1
My/1
M/ 1
ME/T
Mb/T
NF/1
MP/1
ME/T
Mr/1
MP/T

AOS
AQS
A0S
A0S
AOS
AGOT
AOOT
a001

a5Lvd

368
159
L 1]
1)
%53
59
11]
14
111
11
1]
1]
t17’]
L 1]
£ 19]
L 31

20718
018
L0139
S0Td
019
3013
MOTR
013

T0L

MOT dWOD‘QAXId’S3d
MO0T dWOD'gIXId’sad
WOT dWOD‘QIAXIA’'STH
MOT dWOD'G3IXIA‘SHd
WOT 4dROD‘Q3IXII ‘ST
¥OT JdWOD‘QIAXId‘SHd
WOT dWOD'Q3IXId’ST
MOT &WOD'QaxId’sdad
AOT GHOD 'QIAXIZ’SAA
MOT dWOD‘'aIXId’‘sT
AOT dWOD ‘Q3IXII’SAY
MOT dWOD'CQIXI3’SIAY
MOT dAWoD‘QaxXId’say
0T dWOD'QAXIA’S3™
XOT dWoD‘QaxX1a‘sayg
0T dWOD‘QIXIA’‘sSId
00Z MM ITAVINVA‘STH
HOLSISNYIL
HOLSISNVYL

1°0 W43 * dvD
10 HYE3D ' d¥0
1°0 WYY30 ‘ded
-0 WYH3AD “ a0
10 WYYED ‘ &0
Jdoot WYH3D ‘' d¥D
34001 W30 dYD
34001 W30 ' a0
an1va NOIL4I¥OS3AA

ALE0TOLOEY
HLEOTOLOWDY
WLE0TOL0EDY
HCEOTOL0HOT
WLEDTOLOYOY
RLE0TOL09Y
RLEOTOLOWDY
HCLEOTOLO¥OAL
RLEQTOLOWOT
HLEQTOLOYOY
HLEOTOLOUDY
RCEOTOLOWDY
RLEOTOL 0¥
HCLEOTOLOUDY
RCEOTOLOWOY
HCEOTOL0WDY
RMS00-€/STO6ER
LI LENZXINYL
YETLINZXINYL

1692-r6/58609H
169Z-¥6/58609H
T69Z-¥6/SB609R
169C-76/S8609K
169Z-¥6/58609K
08EL-P6/S8609M
OBEL-V6/S8609H
OBEL-P6/SB609K

YIEHON
Lavd

40T~L00d
A0T~-LODY
AOT-L00d
A0T-L00d
J0T-L00Y
NOT-L00Y
AOT-L00d
A0T-L00d
JOT-L00d
AOT-L02Y
NOT-L00W
NOT-L02d
AOT-L00d
AOT-L00d
A0T-L00Y
A0T-L00¥W
00Z-b21y

L9LENZ

Z2zZ2ZNe

T°-p1AD
1°-rTD
[l 28")
T°-p1dD
T -1
4400T~-TTHD
J4a001-113D
4300T~-TTND

d0IAda

1€0d
6204
ezod
LeZod
9204
L FA1)
1204
6104
LT0d
FTO0Y
€0y
2104
6004
Lood
S00d
Zooyd
rrod
2000
1000
g€ood
2ood
tood
L00D
9002
5000
2000
1002
8000
»002
€000

o1s3a

255

1/8006€-d-TIH
1/8006€-4-TIN
1/8006E-Y-TIN
1/8006E-Y-TIR
1/8006E-4-TIH
1/8006E-4-TIN
1/8006E-U-TIN
1/8006€-4-TIR
1/8006€-4—TIN
1/8006E-4—1IH
1/8006E-4-TIR
T/8006E-4~TIH
1/6006E-49-1IR
1/8006€-4-TIH
1/8006E-4-TIK
1/6006€-4-TIN
1/8006€-4-TIN
1/8006€-8~11W
T/8006E-U~TIW
1/8006€-8-TIH
1/8006E-4-TIN
1/8006E-d-TINW
1/8006€E-4-TIR
1/8006E-4—TIW
1/8006E-Y-TIN
1/8006£-49-11MW
T/8006E-d-TIN
1/8006£-9-1IH
1/8006€-Y~TIH
1/8006€-4—TIH
1/8006€-4~TIR
1/8006€-4-TIK
1/8006€-4-TIN
1/8006€-3-TIR
1/8006€-4-TIR

6b0¥
6bOY
6VOV
6F0Y
6b0OV
6¥0V
6¥0V
6¥0V
(100) §
690Y
6bhov
(3)
6vOY
6bov
6FOVY
6OV
6p0V
6¥0Y
6b0Y
60OV
6¥0¥
11.10)
6OY
60V
6POV
6¥0Y
6¥0Y
6%V
6y0Y
6¥0¥
6¥0Y
6¥0Y
60V
60V
6¥0Y

Mp/1
ne/1
MF/T
AF/1
Mr/1
My/1
MF/1
MK/1
M¥/1
My/1
My/1
My/1
Mp/1
Mr/1
My/1
MF/1
hr/1
M/t
My/1
nr/t
My/1
MP/1
MR/T
My/1
uy/1
ur/1
MY/
Mr/1
MF/T
My/1
Mr/1
ME/T
Mb/1
ME/1
ME/1

131
L3+
L3
L 11
AGE
1341
L3)
131
AGd
11
L1
59
(3T
139)
134
1 3]
137
131
117
1371
L3
11
3sd
13
L 11)
L3
L3
131
L1
.3)
L3
1371
153
AGP
1 31

01s
018
ots
018
018
018
0ts
015
(1289
018
0ts
015
0TS
01s
015
01s
01s
01s
0ts
{12 41
01s
01s

13
06t
06t
06t
06€
q49¢
AIE
A%E

2
q0T
q01
A0t
dot

dROD‘a3AXId 'S3d
dHOD 'a3IXId‘'S3Y
dWOD ‘aEXId'STd
dWOJ ‘aaAXII ‘ST
dWOS ‘Q3XId ‘ST
dWOD ‘qaXIJd ‘ST
dWOO ‘aaATd'STY
dWOD ‘aaXIJ ‘STY
dW02 "daX14‘s3d
dWOD *a3XIJ ' s3Y
dWOD ‘g3XId‘S3IY
dWOD 'a3x1d ‘s3d
dWOD "d3XId‘'sId
dWOD ‘a3XTd ‘ST
dROD ‘J3X1d‘Sad
dWOD 'QIXId ‘ST
dROD ‘d3XIJ4’S3d
dWOD ‘G3IXIA ‘ST
dN0D ‘d3X1d4‘s3d
dN02‘a3xXI14‘S3d
dHOD ‘QaXII ‘ST
dWO0D 'aaXI3 ‘ST
dWO) ‘aIXIS‘say
dWOD "Q3XI I ‘'S
dHOD ‘gaxXId ‘s
dW0D ‘gax1d‘s3d
dHOD ‘gIXId ‘STy
dHOD ‘Q3X14d ‘S3H
dR0D 'a3X1d ‘s3d
dROD‘a3XId ‘ST
dW0D ‘0axXI3’s3d
dWOD ‘a3X1d ‘'S3y
dW00’'adxX1d 's3d
dWOD 'aaX14'Ss3d
dWOD QaXId ‘ST

RLTTS9L0d0d
HL11SDL0ddd
RLTTISOLOYA
HL11sDL080d
HLTTSOLO0YOd
RC115940904
RLT11S9L090Y
AL 115940909
HLTTSOL0dDY
WOTISOL0EDE
WLTTSOLOYDY
RLTT1SOL0¥Y
WLTTSOL0YEOE
WCTTISOL0YOd
RCTTSOL0YOE
HLTTSDL0YOd
WOTTSOL0d0Y
WLTTISOL0YNOY
HLTTSOL0YOY
WLT1S2L040d
RLTT1SDL0¥0d
RLT159L080Y9
W0 199L0d90d
HLT6EDLOYNY
HCLT6EDLOYNDY
RLT6E9L0¥0Y
WL T6EDL0YDY
HIrEIEDLOYDA
RIESEOL0YDY
RLESEDLOEDY
ROOZTTOLOWDY
HLEOTOLOYDY
KLEOTOLOYOY
RCeeE0T19L080d
HLE0TOL0YOY

015-4004d 2904
01S-L00d 1904
015-L00d 0904
015-L004Y 6504
015-L00¥ 9504
01S-£00¥ LSO
015-L00¥ 9s0¥
015-L00¥ SpOY
01S5-L00d SZ0d
01S-L00d £20d
01S-L00W ZZo¥
016-L00d 0204
015-4004 8104
01S-L02d 9104
015-L02d S10d
015-L00d 110d
OTS-L00d oTO0d
015-L004 800Y
015-L00d 9004
0T1S-L0254 y00d
01S-L00¥ €00d
0IS-L009 TOOY

16-L0204 150d
06E-L00d 6€0d
06E-L00Y BEOY
06€E~-L0DW LEOM
06€-L00d ZeOW
AIE-L0OOYE S50M
49€-L00d #S0H
NIE-LOOY ESOY

4Z-L00d 8y0Y
A0T-L0OY 9¢0Yd
A0T-L0Dd S0
q0T-L00Y ¥yEQM
d0T~-L00¥8 Ec0d

256

8IT/00S61-S-~"TIN
81I/00S6T-S—TIN
8T1/00661-5-1IN
T0T/01S8E-S~TIN
TOT/01S8E-5-1IH

cooa

T00/0TSBE-S—TIH
100/0158£~-S-"1IN
100/01S8€-S—1IH
€/2Z818S-9~TIW
£/2816S-9-TIN
€/28155-4~TIH
€/28155-4-TIH
€/28165-4-1IH
€/2B1SS-U-TIH
£/8006E-d-1IN
1/8006€-4-TIK

BEOY
8E0v
BEOY
0£02
0€02

2004
<004
2004
rSo¥
rSov
rFsov
reov
1491} 4
14940 §
T50¥
6¥0VY

M8/1
MB/1
M8/T
MB/T
Mg/1
M8/1

MI
MY/T

19
L)
L0
18
18
L3¢
59
137

b (17
A6 " 6F
AT 0

2002
ABT"1
AO°T

oye
0TS

d9 “T¥NOSIS '300I1d
a0 “TYN91S ‘30014
do “T¥NS1S '3001d
100 QALVIOALNI
100 GALVEO3LNI
13D QALWVIOSINI
430 QIALVYOIINI
130 QILVIO3INI
L300 QALVYOALINI
100 QIIVEOAINI
130 GQIIVEOALINI
WIIZ’'QaXId’'sad
WII4‘0aXId'sad
WIId 'QExXId’'s3d
WI13'a3axid’sad
W11d‘'Q3ax1d’s3d
WIIJ4‘QaXId’'sad
dWOD ‘a3xX1a‘sad
dROD "IAXIZ‘STd

86 TOENTXJINNVD
86 TOENTX.INVC
dS8PNTXINYDL
GS8FNIXINYD
GSoPNTXINYD
voHrOTI0T/
YoHPOTO0T/
s0096ce1
¥00962¢T
LEEEGZLT
g24d10100/
82410100/
aod10100/
RIE66PHOIONY
HAZ66YHOIONY
WIZTOEHOIONY
WIE00CHOIONY
RIATTTHOSONY
RITLOTHOSONY
WC1r2028804
WCTTSOLOMDY

G6TOENT
6TOENT
S8FNT
SBFNT
S8PNT

80T

801

10000
KeIrL
E0ESHOR
OEbL

0EbL

0ErL
A66F7-09NY
46" 6¥y-09Nd
MT°0E~-O9Nd
A00Z-09HY
MBI T-09NY
HL0°T-05HY
0ye-ZeX
015-L00d

Z200dA
1004
£004W0
20040
10090
200Uy
T00uY
0100
Zoon
6000
soon
o000
€00n
o
£v0y
orod
504
otod
chod
Ly0d
€904

257

APPENDIX G
TEST INFORMATION FOR PWA M87706172

258

1/8006€E-4-TIH
1/8006£-4-TIN
1/8006€-4-1INH
1/8006€-4-T1IKH

d
ETT/01S8€E-S-TIN
¥6/58609-0-1IH
¥6/58609-0-TIH
¥6/58609-0-TIW
¥6/58609-0-1TIN
¥6/58609-0-"TIK
¥6/58609-0-1IH
¥6/58609-0-TINW
?
010/0158¢-S-"TIR
0T0/01S8E~-S-TIN
T00/0158E-S-TIRW
100/0TS8E-S-TIH
T00/01S8€~-S-TIN
T100/0158E-S~TIH
]
815/00S6T-S-TIN
552/00561-S-1IW
811/0066 T-S-TIR
LZr/0056 T-S-TIR
LZ¥/0066T-S-TIR
ST1/00S61-S-TIK
ST1/0056T1-S-TIH
T0T/0158£-5-TIR
T0T/01S8E~S~TIR

NOILWDOIJIDAAS
ANLITIR

L0dDd
Lodd
L090d
L0o¥oy
12434
914dIa
PTEIO
bTEAD
PIRAD
FTEAD
TTHAD
TTRAD
TTNAO
¥141qQ
$1dId
F1dIqA
¥1dId
v1d1d
p1dig
¥1d14
¥1d1a
99-0L
81-01
204o1q
20aolIq
2040Iq
S04oIa
S$04Q0Id
66-0L
66-0L

g17

Mp/1
ME/T
MP/T
MR/1

AOS
ADS
A0S
A0S
AOOT
ADOT
AQOT

DRI

159
3
L 1T]
L1

019
019
013
0T
M0TR
1018
TR

PP TIIPPIORTIITIT®

alvd 10l

q01
q01
A0T
q01

dot’
ant-
Chin
0T°
44001
44001
44001

VLRI D

anTua

dWOD ‘a3XId‘'s3d WCEOTOLOYON
dW0D ‘qIXId‘SAd RCE0T2L0¥OY
dHOD ‘Q3aXId ‘sHd ACE0TOLO0¥OY
dH0D 'EXIJ 'S WCe019L04804
LINAID dIIVYEOIINI LEEEee2T
LINOYID (ILYEOILNI TOETT/0TSBENW
R3D 'avd 1692-v6/S8609NW

HVd3ID 'avd T169Z-F6/S8609H
WYd3D‘dvd 1692-76/S8609KW

WJED ‘d¥0 1692-06/58609H

WYJ3ED ‘d¥d OBEL-¥6/58609H
WVY3D‘d¥D QOEL-¥6/58609HW

RVY3ID ‘a¥d 0BEL-¥6/SB609N

LINJYID GIALVADILNI S0096221
LI00YID QILVHOIINI 600T0/01G8EW
LINDYID AILVEOILNI 600T0/0TS8ENH
LINDYID QIIVYOILINI TOT00/0TSRENW
LINOYUID (QIIVHOILINI TOTO0/01SBER
LINOIIO JILVHDALNI TOT00/01G8EN
LINJYID GALVHOILNI TOTO00/0TSBER
LInO¥ID QILVIOILNI ¥0096221
gaMod ‘dLsX L9 LENZXLINVL

do ‘d1sx WZZTINTXINYL

49 “TdNDIS ‘300140 HS8PNTXLNVD

49 *TYNDIS '3001a FT9SNTIXLINNYCD
49 TVYNOIS ‘3a01Q ¥ I9SNTXLNVL

AT 6 ‘d3N3Z ‘J001d g6 TOENTXINYL
AT°6 ‘93ANIZ ‘3001 d6 TOENTXLINYY
d3TATTINY $0I0T/01SBER
YITAITdRNY YOTOT/01S8EN
ROILAI¥OSAQ YIGHOR Luvd

A0T-400d
AOT-L00%
AOT-L0DY
MOT~L00d
£0ESHON
800v¥a
T°-F1ND
T°=-rTiHD
1°-pTHD
T°-#THD
J4d4001-TTAD
Jd00T-1T3D
4400T-TTD
%0900
evrL

6brL

otbL

OE¥L

OErL

otbL

veTrL
LILENZ
ZTZINZ
S8INT
PI9SNT
PI9SNT

6 TOENT
6TOENT

801

801

JOIA3A

L104
riod
€10d
Z10d
6000
8000
L002
9002
5002
100D
8002
¥002
€002
oton
4000
1000
Loon
000
»oon
€000
zo0n
Zood
1000
£00dD
200%0
10082
2004dA
100¥A
200dv
100W¥

21830
Cict. |

259

1/8006€-4-TIK
1/8006£-4-TIK
T/8006€-d-"TIN
1/8006€-9-TIK
1/8006E—d-TIK
1/8006€-49-1IR
1/8006€-4-TIN
1/8006E-4-TIH
1/8006€-d-TIH
1/8006£-4-TIH
T/8006E-H-TINH
1/8006€-4-TIN
T/8006E-¥-"1IH
1/6006€-U-TIH
1/8006€£-¥-TIRN
1/8006€-8-"TIK
1/8006€-U-TIK
T1/8006€-8~-TIH
T/8006E-4-"TIR
1/8006e-94-TIK
1/8006E-d-TIN
1/8006E-¥~-1IH
T/8006€-4-"1IH
1/8006€-8-TIR
1/8006€-¥-"TIN
1/8006€-4-TIN
1/8006t—d-1IRN
1/8006€-4-TIKW
1/8006€-4-TIRK
1/8006€-4-TIKH
1/8006€-d-1IK
T1/8006€-¥-TIN
1/8006€E-4~TIR
1/8006€-9-TIK
1/8006E-4-1IH

Lo¥DY
Loy
L0490y
Lo¥dyd
Loydd
Lodoyd
L0¥DY
Lod>d
LoYdd
Lo¥OH
L0¥Od
L0¥od
LOodDYd
L0¥od
L0¥0d
L0d0d
L0¥DYd
40"y
L0¥d
L0¥d
Lo¥OH
L0¥oy
L0¥od
L0¥0d
L0¥0Y
Loddd
L0d0d
L0¥Dd
L0¥Dd
L0¥0Y
L0¥Od
Lo¥od
Lowdd
£04¥cd
Loudyd

Mb/T
Mh/1
My/1
ME/T
M/l
ny/1
ME/T
Mb/1
MF/1
ME/T
Mr/1
My/1
MB/T
Mp/1
My/1
MB/T
ME/T
MF/T
MF/T
Mr/1
ME/T
MP/1
MF/1
Mr/1
MK/1
My/1
N¥/1
My/1
ME/T
Mp/1
Mb/1
MF/T
My/1
MF/T
MP/1

%G9
£ 3]
L1
%59
1Y)
£ 3]
%59
L1}
111)
1T}
117}
3G9
3G9
59
117
117
11
SH
17}
17
119
L5d
L 17
19}
L1
1]
1)
114
17
£31]
L1
1)
£1)
359
£ 31]

01s
01§
01s
o018
015
01§
01§
01s
0TS
01s

1s
06€
06¢
06€
06t
A%¢
€9
A9¢E

(44
b (1)
q€07
301
A7
Jot
AT
301
201
q07
dot
b [12
(1)
Aot
201
q€0T1
b (1)1

dHO0D ‘a3axX1d ‘s3d
dR0D'QAXIA ‘ST
dW00'aaxId ‘sdd
dNOD‘qax1d ‘ST
JROD‘QAATI ‘ST
dWOD‘q3ax1a ‘s
dWOD ‘g3XId‘'STd
dW0D‘aINId ‘ST
W02 ‘aaEXTId ‘'STd
dWno0’qIX1I3’'s3y
dW0D ‘a3XId‘sTd
dW02 ‘'qQaXId ‘s
JROD ‘aIXId ‘ST
dHOD ‘a3 13 'STd
dWoD ‘aax1d’‘sad
dHoD 'qax1Id‘s3d
dHOD 'aAXIJd ‘STd
dH0D’a3X1d ‘s3d
dWOD ‘a3xId ‘s
dd0D'QAXII ‘'STd
dWOoD ‘aax1d‘s3d
dWoD ‘gaxXId’‘sTy
dWoD ‘gaXId ‘s
dW0D'aaXId ‘ST
dNoD ‘aaXIJ‘sTd
dR0D ‘aaX14 ST
dR0D 'QaXIJ ‘ST
dROD ‘aaxId ‘s
dH0OD‘AaAXIJ ‘ST
JROD‘QIAXIA ‘ST
dWOD 'aaxId ‘'s3d
dHOD ‘QAXId ‘ST
dROD 'QIX1Id ‘s3d
dW0D ‘aaX1d‘sTd
dWeD ‘a3X1d ‘sad

R 11594080y
RCT1SOL0UDY
W TTS9L0d90d
WCTISOL0UDH
WCT1SOL0UOY
WOTTISOL0EOY
ACT1SSL0dDY
ROTTSOLOUY
RCTITSOLOYON
RCT1S9L0¥0d
RCOTSOL0MY
HLTEEDLOWDY
RLT6ESLOWOY
RLT6E£9L0¥DY
HLT6EDL0WDY
RCEIEDLOUIY
NCEIEDLOUOY
WCEIEDLOUDY
Hro2zZoLodod
NCEOTOLOY¥OH
RCLE0TOLOWDY
HCE0TOL0¥OY
RCEOTOLOYWDY
RCE0TOLOYOY
WCEOTOL0HEOY
NCEOTOLOYOY
Hre01oL080d
WCE0TOL0NDY
HCEOTOL0EDYE
WCS0TOL0WOY
WCe019L0490d
RLEOTSL0HOY
WrEDTOL0UDY
Hreo 194094
HLE0TOL0¥OY

0T5-L00d s20d
015-L02¥ £Z0W
015-L00¥ Zzzou
0T6-L00" oZod
01S5-L0OY B810d
01S-L00¥ 9104
0Ts-L00¥ ST0Y
01S-L00¥ 1TO0M
015-L00d oTOd
015-L00¥ 100d

15-L004 1904
06£-L00d 6€0d
06€-L90¥ 9€0d
06£-L0DY LEOY
06€-L00Y 2tod
AIE-L0OY SSoM
AIE-L0DY ¥S0Y
M9E-LODY £S0Y

<Z-L00¥ 8pOY
A0T-L0049 600Y
AOT-L00d tood
MOT-~-L00d S00d
J01-L00¥ 9¢€0Y
A0T-L0DY SEOM
AQT-L0DY FEOH
J0T-L00Y te0Y
dOT-L0Dd Teod
AOT-L00YW 6204
J0T-L00¥ 8204
NOT-L00W LZoW
MOT-L0Dd 9Z0Yd
A0T-L00¥ p2ZOY
AOT-L02¥ T20¥
JOT~L00d 200¥
A0T-L00¥ 610¥

260

€/6106€-4-TIH
€/28155-4-TIN
£/20155-4-TIH
£/28166-4-TIN
€/28165-4-TIN
€/28T46-4-TIN
E/T8TSS-U-TIN
£/8006€-4-TIR
1/8006€-4-TIK
1/8006€E-4-TIK
1/80C€E-U-TIR
1/8006€£-9-TIH
T1/80C6£-4-TIH
1/8006£-4-"TIR
1/8006£-4-TIK
1/8006£-4-TIK
1/8006€-4-TIW
1/8006£—d-TIK
1/8006E-4-TIN
1/8006€E-¥-TIW
1/8006€U-"TIW

| FAR
090Ny
090Ny
090Nd
09D0NY
092Nd
090Nd
A%, o} ¢
Louod
L04d0d
L4090y
L0¥0Y
[R1}. 500 |
LoWOd
A1} el |
L0395
Loudd
L0¥dd
L0Yod
A1). |
L0¥od

nr/€
MB/1
M8/1
ME/1
Mg/1
M8/1
M8/1

NI
ur/1
ny/1
/1
“r/1
M/t
Mr/1
ur/1
nr/1
MP/T
MF/1
ME¥/1
ne/1
Mb/1

111]
131]
111)
ATd
L3¢)
ATd
sTR
A58
£ 11)
£ 1)
1T
L 19)
11]
L17]
L3
L1
117
L]
Ao
1)
L 11)

002
b 111
d6'6p
AT 0E
q002
ABT1
qAL0°1
ore
01s
01s
01s
01s
01s
01s
o018
01s
01g
01s
o018
015
018§

WII3Z‘G3XI3 ‘s
WII4'Q3IXId ‘s
WIld’'Q3IX1d‘s3d
W1Id°03XId‘sad
WII3'A3XId ‘ST
R113'03XI4 ‘ST
dW0D 'QIXId ‘ST
dH0D ‘Q3AX1d 'SY
dWOD ‘QaX1Id ‘ST
dWOD ‘QIX14'STY
dWOD ‘QaX1d ‘ST
dROD ‘a3IATI ‘ST
dROD ‘A3IA1d ‘ST
dROD ‘aIX1Id ‘s
dHO02 ‘a3XId ‘sTd
dWOD ‘Q3x1d ‘sTd
dWOD ‘Q3IXIA ‘STY
dROD ‘aaxX13 'S g
dHOD ‘QIXT ‘ST
dROD 'aIXIL ‘ST

NNOMTYIM ‘HYA‘STd HMS00-E/STOGER

RAE66 PHOSONY
RAZE66 YHOSONY
RAZTOERIIDNE
RJE00ZHO9ONY
RJATSTTHO9ONY
RATLOTHO9ONY
ROTPZO2EWDAE
HLTTSOLOWOE
RLITSOLOWDY
RCTTSOLOMDY
ROT1659L0904W
WL TT1594080d
HOTT1SOL0¥DY
ROTTSOL0UOT
ROTTSDL0¥0d
WCTTISOL0¥OY
RCT1S9L0¥0H
W 115940804
ACT1SDL090d
WCT1S9L080d

002-p21lY8 ¥¥OU
A66P-09NY T¥OH

A6°6v-0SNd €00Y
AT 0E-098Y 0¥OY

JOOZT-09NY 7S0¥

ABT " T1-09NY 0€0d
dLO°T-09NY Zp0H

0¥Z-2EDY LPOM
015-L00d 8004
015-L02d €904
01S-L00Y 2304
015-L004 1304
015-L00"Y 0904
015-L00¥ 900d
015-L00d 6504
015-L00d 8504
015-L00Y LSod
015-L00d 9504
015-L00d S¥PON
015-L00d roOW
015-L02d £00d

261

APPENDIX H
REFERENCE INFORMATION FOR PWA M87706172

262

8Z8E6ZZTH
0096221
T0tE62T

290°
059°

ANTYA

LSIML QNY MOH RNHIXVW
IdD/Q7 QHONID :30VWdS NIW
WHEOVYIG DILVRIHOS
ATARISSY IX3N

RO adsn

ONIOVAS INIANOJWOD HAWINIW
NOISNELOYd QVIT ANHIXYH
SSINMDIHLI gyvod

LHOIAH INIANOJHOD WOWIXVW

JTLIL

263

APPENDIX 1
ENGINEERING NOTES FOR PWA M87706172

264

Blls SE09622T SI HIHTOETT/O0TSBEN YOJ JLYNYILTY ITEYLLIOOV °

G010«

L6YSTPSONS ‘HERS/6PbS HOWASYRPGYN TUV HOHE00TO/0TSBEW uOJd SILVNMILIV ITHYIIIOON

ZYA'TdAs SQUTT ONY X0QOH SNIYEAOD €E€Z-bPTdH ¥3d JAATIS

0I0 ‘8N ‘2N ‘2d¥ ' THV

TT°P"€ QNY OT°B°E ‘6°%°€ ‘L°F°€ ‘¥°9°¢°€ ‘6°2°'€ SHAVHOVHVA 1Ld3DXI
‘6£-0TdH ¥3d SNOIIAVOIEd JJVS OIIVIS ONISN ININOJWOD ITANVH

i AdAL 85099-I-TIK H3d TVIMILVW ONISAO
‘NMOHS SVYIHV 3AIS d0L ONIGNTOXZ ‘05096221 ¥3d QUYOH INOD 'TGWdOJINOD

JTOH ONV Y3IOULS FAISNI TUIYALYW ONIGNOE JAORIY
‘¥ SSWID T ddALl S9096771 ¥iA4 TVIYIALYW SNISN SYIOVIS QANOE

€d4°SOs STHORI 0FO°'0 OL ‘Q¥y0d 3O HQISUVd NO SAVFT KIul
€4'2d°14°20+ DO IAVED ELFPZZ-S-TIW W34 TYIYILYW ONISA SOVIYHLI ‘TVES ONV 3RI¥d

‘XYW 4 OFT IV TdOD IVIH ¥O AD HIV

"HOIH HORI 90°0 WILOWHVHD {0£1-0LS-TIW Hd3d ONHIS auvog8 XJIINZAI °

Z0s SANONOZ-HONI 8-9 Ol SMAYIS 3IndHOL °

LEOGBSEQS ¥AA QuUYOd YIATOS (NY ITHWISSY

p209622T7 ¥3d aHNOH ISl

ONIMVYEA DILVWEHOS W04 8Z78€62ZTW J3S °

L1

*91

‘St

'

£l

"1t

"0t

]

265

APPENDIX J
IGES BOARD OUTLINE FOR PWA M87706172

266

N MWV W~ >

- N YOO -
L B IR B B I BB B B Y

~ NSNS NN Y ~O0OND
~

1

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

OnooconooOooaoancnnopaocaocoocococaoam

10000000
‘0000000
‘000000°0
£000000°'0
‘000000°0
‘0000000
1000000°0
‘0000000
‘0000000

‘000000°0 ‘000000° 1
‘0060000°0 ‘0G0000"0
‘0000001 ‘000000°0
‘000000°0 ‘0000001
‘000000 " T- ‘0000000
‘0000000 ‘000000°0
‘000000° 1 ‘000000°0
‘000000°0 ‘0000001
‘000000°0 ‘000000°0

z

T

2

1

FA

1

2

1

£

£

£

€

£

£

T

‘0000000
‘000000°1
'000000°0
‘0000000
‘0000000
*000000° T
‘000000°0
‘0000000
‘000000° 1

14
€2
12
61
91
€t

ot

T

0Tt

oty
011
o1t
o1t
oIt
011
0Tt
¥l
et
el
et
*Z1
X4
¥t
el
¥l
"1
zt
et

{EE-p2-ZLHY ' ' ‘60976

STEBHET "' “HONIHF "1 °0008°10Z° ‘96°80'#Z 80 91 00 10 AT SADIHNT'WIALSAS
OVHO SAAVD°00°TT ATE"NOISIAYALNAWOOHSY ‘BNITLNOC" SIDI " LZBE SAJWHZZ* ' “HT ‘ 'HT
ANITINO aYvod

S
s

‘w2l

‘pet

‘vl

‘L2
o144

CLTIOLLBH

267

T

92
se
¥e
€2
e
1
0z
61
81
L1
91
51
1
€1
A
19
o1

L

a6l
dét
dLT
dL T
dast
dst
del
del
41T
dtl
14
dé

dé

dé

dal
dai
daL

0000520~
‘00005L°S
‘0000SL°S

‘000052°0-
{000000°0
‘000000°0
‘000000°0
{000000°0
‘000000°0
‘000000°0
£000000°0
‘000000 °0
‘000000°0

‘0000000
‘0000000
‘000000°0

‘000000°0
‘0000000
‘000000 T
0000000
'000000°0
0000000

‘000000 " T-
‘000000° 1~

‘000000 "0
‘0000000

92z d02

‘000000°0
‘000052 °0-
{000000°0
‘00005L°§
1000000°0
‘0000SL"S
{000000°0
‘000,052 0-
‘001000 T
‘000000°0
‘00000070
‘0C0000"T
‘0C0000°0
‘60000070
‘0000000
‘000V00 " T-
000000 "0

ae BRI

'000052 " 0-
'00005L°S
’000052°0-
*00005L°§
‘00005L°S
‘000052 0~
‘0000SL°§
‘0000520~
‘000000 °0
‘0000000
‘000000 T~
‘000000 "0
‘000000 T~
'000000°0
‘000000°0
‘000000°0
‘000000° T

‘0Tl
‘011
‘o011

‘o1t

‘¥zl

‘vt

‘per

268

APPENDIX K
IGES TOP VIEW OF PWA M87706172

269

DO = NN VDD NN W™D
o o e et e e NN NN NN NN

HANM - N AN T W e~ o

LD R LR L o = R = R = Ty = Iy = R o R = [[= I =~ = i = R = R = R = R = R~ R~ R o R = R = N = R = R = Y o R = ¥ o

000000

006000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

M N el Nt NN A NSNS NN

T

EE

1t

62

Le

T4

¥4

| ¥4

61

91

€1

o1

1

ori
124
oTY
o1t
011
1141
o1t
011
011
o1t
01T
194
ott
o1l
011
o1t
el
"zt
1 A
LLA!
[X4}
1 £41
L FA
1 48
¥2i
(A
¥l
124}

{EE-VZ-ZLHB' '’ TTIRTIE
‘L ZIEBHET' ' 'HONIHP ‘1°0008°T0Z“95°80°PZ°80°9T°00°T0 AT SADIHP T 'WILSAS
JIHAWHD SQaW¥D 00" TT AHY NOISISYIIOAWOOHSE ‘T1d*SEDI"LZ8E°SAIWHLT‘*‘HT ' ‘HI

MIIA dOL
1d
ZLIS0LLER

270

S NM SN Y~ OO

RN O ~NyM o=
N m

daiz
d1ez
del
d61
dLt
daLl
dst
dst
det
del
a1t
a1t
att

000000

000000

006000

‘000£6G°S
‘000€65°S
‘000985°S
‘0002LS°S

‘000¥SS°S
7000000°0
‘000000°0
‘000000°0
{000000°0
‘0000000
‘0000000
7000000°0
‘000000°0
‘000000°0
{000000°0
‘000000°0
‘000000°0
£000000°0
‘000000°0
‘000000°0
£000000°0
‘000000°0
‘000000°0

‘00000070
‘0000000
‘0000000
‘0000000

‘COD000D" 0
‘000000°0
‘000000°1
‘000600°0
‘000006°0
*000000°0
‘000000°1-
‘000000°1-
‘000000°0
‘0000000
‘000000°0
‘00000070
‘000000° T
‘000000°0
‘000000° T~
‘000000°0
‘000000 1
‘0600000
‘000000°0

2000000°0
‘000pTL"2
{000000°0
‘0005692
0000000
‘0008L9°2
{000000°0
‘000899°2
000000°0
‘000¥99°2
‘0000001
‘000000670
‘0000000
‘0000001
‘0000000
‘000000°0
‘0000000
‘000000 °T-
‘0000000
‘0000001
‘000000°0
‘0000000
‘000000°T
‘000000°0
‘000000°0
‘0000000
‘000000° T
‘0000000

N et N =N

‘0009€EL"Z
‘000£65°§
'000kTL"2
'000985°§
‘0005692
‘0002LS°S
‘0008L9°Z
‘000¥SS°S
‘000899 °2
'000€ES "G
‘0000000
‘000000°0
‘000000 "1~
‘000000°0
‘000000° T~
‘000000°0
‘0000000
‘000000°0
‘0000001
‘00000070
‘000000° 1
‘0000000
‘000000°0
‘0000000
‘0000001
‘0000000
‘0000000
‘000000°T

6t
LE

St

011
011
oT11
o1t
011
o1l

‘ott
‘ott
‘0Tt
‘o1t

‘01T

‘ret

‘pel

ret

‘vzt

‘p21

‘vzt

271

14
or
6€
Bt
LE
9t
SE
vE
£
Ze
113
11
62

dse
det
dee
d1¢
41€
deZ
462
aLe
dLe
dse
dsZ
dee
dee

‘00018%°S
‘00056¥ S
‘000E15°§
‘000FES"S
‘000¥55°S
'000€ELS"S

‘000985°5

‘000000°0
‘000000 °0
‘000000°0
‘000000°0
‘000000°0
‘000000°0

‘0000600°0

‘oooZLL e
{000000°0
‘00028L"2
{000000°0
‘00058L°Z
{000000°0
‘ooozeL"C
{000000°0
‘000TLL"2
{000000°0
‘000SG6L°2
00000070
‘0009EL"2Z

'000560°S
‘ooozLL"Z
‘000E1S5°S
‘00020L°2
‘000PES’S
‘00088L"2
‘000PSS°S
‘o000zZ8L 2
‘000€ELS"S
‘000TLL"Z
‘000985 °S
‘00066L°2
‘000E6S S

‘otr
‘o1t
‘o1t
‘01T
‘01t
‘011

‘011

272

APPENDIX L
MCL COMPONENT DETAILS

273

39014

30014

30014

30014

aaola

30014

dla

¥O112v¥d¥d

HOLIOVdWD

HOLIOVdVD

AdAL-dHOD dNOYD-dWOD SNLVYLIS-dWOD

30014
PSOFNINVE

3goIg
PSPYNINYSE

300140
- FSPYNINYE

300140
T-0STYNINVE

30010
SOTYNINYL

30014
QOTPNINYD

¢1Q-N1d-¥1
dvEOEDd

rroziizq

WOOQ0UEIEOUND

HOLIDVdYD
HQOLZTLV 480MMD

HOLIDVAVD
V004201 49080

§OLIDVdYD
TAdL 10T 300UHD

J530-dh0D

WAN-LUVd-dNOD

274

oL

3oola

3gola

30014

3gIa

30014

30014

10014

iqoIa

jgolaq

L o R R T D D Lk e R R MR A R P D D R A R A M D R L S T e e AP AR R N P R R R W S S W S A D A U e e e W e R A

3dAL-dHOD dNOYD-dWOD SNLVLIS-dWOD

G33dS HOIH "HOLIMS
VZZIINIXNINYCL

30014
GPIGNTXLNYCL

30014
VSSINTXLNYL

300149
VarINTXLNYE

30014
T=-SPONTXLINYD

3001a
FLOSNTXLNYL

3001d
FOBSNIXLINYS

30014
BSEFNIXLNYD

30014
QOSENTXANYE

30010
BOTOENTXLNYTL

30014
SYONINVE
30014

953Q-dH0Y
NNN-14Vd-dW0d

275

APPENDIX M
MCL COMPONENT PART DESCRIPTIONS

276

osrt osrt

135440-A 135440-X 1S WON-3NTVA

69°1

4]

QI-30N2N03S
ANTVA-dNWOD

0
80810T80/0TSSEN

0
VZZZINZXLINYL

0
WIGRUTSTSNMN

0
80870050/0TS3EN

X308S0LL-CEEVIN

0
OOTYNINVYT

0
PIOTLOSWN

0
9398090E/01S8EN

0
NLOZ30L04ON

0
‘00sE
0

¥S0Z.22T

0
9€-v-19/Z0€SSH

=701 +704 ALINYI0d

N3BWAN Livd

0 0

Ve A R S S R e W I R M e T L e e e e

135440-A 13S3440-X

1S WON-3NTVA

aI-3IN3ND3IS
ANTVYA-dWNOD

=704 +701

0
g90860010/07S8EW

)
8.7-22/¥T0BEN

0
g0810150/0TSEEN

0
¥Z-1-T9/20ESSN

0
IPI0ZHSYN

0
£20-82/90T9M

0
9-70320TTSYN

0
WAZTE8THOSONY

0
WLOSEDLOYIY

0
WAYO0OTHSOONY

y1Q-2Z/9108EN

1]
WETE9DL0W0¥

AlI¥VI0d
UIBWNN LMVd

278

-

APPENDIX N
MCL PAD PATTERN DATA

279

0001~

L0L-

oL

0001

L0¢L

0si-

0

1]

L e Y ket dtdad

A-¥113Q

0003

LoLn

000¢

LOLY

Goot

tee

0002

0007

0521

0si

00507

0002
X-vil3a

08¢

052

0sZ

0se

0sZ

0se

0sZ

082

0se

0s2z

0se

0sZ

0sZ

0sZ

0se

0se
321s8-Qvd

114

ot

ot

ot

11

o¢

74

L 14

L 4

9z

14

14

1 T4

1 14

oz
SN¥31livd-avd

280

9.9~

¥601-

y807-

949-

8i9

607

7601

9.9

A-¥11340

1802

S0sT

1174

ETZ

00EZ

L1802

S0ST

s§6L

£1¢

X-¥11340

0sZ

osZ

0se

0sZ

0se

052

06z

0se

1114

ose

1114

0se

0sZ

0se

ase

0se
321S5-aQvd

"

1

2t

ZE

43

43

4>

4

t

44

(44

f4 =

1€

11

TE

1€

R T R L L L L e P P P P L L L L R L L)

SNN3LLYd-Avd

281

APPENDIX O
MCL CASE STYLE DATA

282

ooy

ooy

o0z

002

00z

00

1]1¥4

0ss1

0ore

oogs SWY Y9

aze

WYIG-AQYIT-WON WON-L1HDIIM

0 osri
114
1] osrt
0z
0 0seT
114
0 0sZt
0 0112

4
0 SL07

0Z
0 siot

1 4

+ 91
0 oort

SNId-40

osr}

osr1

osrl

0s2T

or1e

SL01

S401

00s2Z

0582

001t

oo0ze

0011

L N Ll L L L L L L T T T A A N R el il bl kel R

-ON

00sE

00s€

ooot

ooot

000E

0s9¢

0592

Qosie

oors

004e

0019

009%

0

(H1)

00

00

00

00t 114

00

0a

NYdS-Qvd SNH3livd-avd

LHOI3M LHOI3IH-WON H1QIM-WON HLDN3T1-WON

O96¥NINVL

YSEYNINVD

PSYPNINYC

PSPININVTD

T-DSTONINYE

SOTPNINYL

001 PNINYL

dvEDEDD

vozieza

WIOAONEIEONND

WAOLZLY 490U

TG0 4Z01 390¥HD

WOAN~-L¥Vd

283

08T ‘20 001 o0o0s2
£
081t "20 001 oosz
Z
ooz 0 oort
Z
114 0 oort
4
(1114 o oory
Z
1144 1] oort
4
1].11 0 099
4
o8z 0 0si
[4
(11} 4 0 oorY
z
002 1] 006
Z
1743 0 0s92
1114
00z o S807
SNId-30-ON

WYIG-QVIT-WNON WON-1HOLI3M

0612

0612

oort

oort

110] B

0o0rs

0si

oonl

006

0s92Z

5807

o6tz

0612

000€

0ooE

Q00¢t

oooe

174§

0o0s7t

ooot

000¢

009s

S22

00071

0001

000S

0oo0s

000s

000s

ooor

000y

000s

0004

ooo0L

NVYdS-avd

LHDIIM LHOI3IH-WON HLQIM-WON HLONIT-WON

T4

t 14

20

<o

20

0

10

10

20

10

#NN31l1ivd-avd

VIOGZNZX LNV

VZZTINTXINYS

SYOENTILNYS

VSSINTXINYT

VOPRINTXLNYD

T-SPONTXLNVD

YLOONTXINVE

YORSNIXNINYL

8SSPNTXLINVS

OOSENTXLNYS

G6TOENTXLINVS

SPININYL

284

APPENDIX P
OEL SPECIFICATION OF PF DATA

285

(i new_part |[detail_part|
size_x_axis: 5.000
size_y_ axis: 2.500
size_z_axis: 3.000
part_volume: 20.5
material: aluminum
original_form: casting
original_form_x_axis: 5.165
original_form_y_axis: 2.625
original_form_z_axis: 3.165
number_of _holes: 6
number_of surfaces: 8)

(i old_part |[detail_part|
size_x_axis: 5.000
size_y_axis: 2.500
size_z_axis: 3.000
part_volume: 20.5
material: aluminum
original_form: casting
original_form_x_axis: 5.165
original_form_y axis: 2.625
original_form_z axis: 3.165
number_of_holes: 6
number_of_surfaces: 8)

(i new_pant_draw_form |draw_form|
detail_part: new_pant
designer: clark
revisions: rev_a
block_tolerance: .001
project: demo
program: ucla)

286

(i new_part_datum |datum|
detail_part: new_part
primary_datum: s4
secondary_datum: 57
tertary_datum: s5
ref_datum_a: ha
ref_datum_b: hb
ref_datum_c: hd)

(i new_hole_data [hole|
detail_part: new_pan
ent_surface: sl
exit_surface: 52
int_x_geo: sl
diameter: .5
dia_tol: .001
bottom_cond: flat
surface_cond: .001
tap_size: 4-48
pos_tol: 0.01)

(i old_hole_data |hole|
detail_part: old_pant
ent_surface: sl
exit_surface: s1
int_x_geo: s3
diameter: .3750
dia_tol: .001
bottom_cond: flat
surface_cond: .001
tap_size: 8-32
pos_tol: 0.01)

(i hole_a_data |hole|
detail_part: new_pan
ent_surface: s5
exit_surface: s3
int_x_geo: sl
diameter: .5
dia_tol: .001
bottom_cond: thru
suriace_cond: .001
tap_size: 3-56
pos_tol: 0.001)

287

(i hole_b_data [hole|
detail_part: new_part
ent_surface: 85
exit_surface: 53
int_x_geo: sl
diameter: .125
dia_tol: .001
bottom_cond: thru
surface_cond: .001
tap_size: 3-56
pos_tol: 0.001)

(i hole_c_data |hole|
detail_part: new_parn
ent_surface: s5
exit_surface: s3
int_x_geo: s
diameter: .125
dia_tol: .001
bottom_cond: thru
surface_cond: .001
tap_size: 3-56
pos_tol: 0.001)

(i hole_d_data |hole]
detail_part: new_part
ent_surface: s5
exit_surface: s3
int_x_geo: sl
diameter: .125
dia_tol: .001
bottom_cond: thru
surface_cond: .001
tap_size: 3-56
pos_tol: 0.001)

288

(i hole_e_data |hole|
detail_part: new_part
ent_surface: 85
exit_surface: 53
int_x_geo: sl
diameter: .125
dia_tol: .001
bottom_cond: thru
surface_cond: .00]
tap_size: 10-24
pos_tol: 0.001)

(i hole_f_data |hole|
detail_part: new_part
ent_surface: s2
exit_surface: null
int_x_geo: $6
diameter; .5
dia_tol: .001
bottom_cond: flat
surface_cond: .001
tap_size: 10-24
pos_tol: 0.001)

(i new_hole_ref |hole_ref]
detail _part: new_part
x_start_Joc: 2.0
x_start_ref surface: s}
x_end_loc: 1.0
x_end_ref_surface: sl
y_start_loc: 1.2
y_start_ref surface: sl
y_end_loc: -.4
y_end_ref surface: s2
z_start loc: 0.0
z_start_ref surface: 52
z_end_loc: -3.0
z_end_ref surface:s2)

289

(i old_hole_ref fhole_ref]
detail_part: old_part
x_start_loc: 3.0
x_start_ref_surface: 52
x_end_loc: 1.5
x_end_ref_surface: 52
y_start_loc: .7
y_start_ref_surface: 52
y_end_loc: 0.0
y_end ref surface: 3
z_stant_loc: 3.0
z_start_ref surface: 53
z_end_loc: -3.0
z_end_ref _surface: s1)

(i hole_a_ref fhole_ref}
detail_part: new_part
x_start_loc: 3.0
x_start_ref surface: null
x_end_loc: 3.0
x_end_ref_surface: null
y_start_loc: 1.25
y_start_ref surface: s7
y_end_loc: 1.25
y_end_ref surface: s7
z_start loc: 0
z_start_ref_surface: null
z_end loc: -.75
z_end_ref_surface: s5)

(i hole_b_ref |hole_ref]
detail _part: new_part
x_start_loc: 1.5
x_start_ref surface: s5
x_end loc: 1.5
x_end_ref surface: s5
y_start_loc: .5
y_start_ref_surface: §7
y_end loc: .5
y_end_ref surface: s4
z_start_loc: 0
z_start_ref_surface: null
z_end_loc: -.75
z_end_ref_surface: s5)

290

(i hole_c_ref jhole_ref]
detail_part: new_pan
x_start_loc: 1.5
x_start_ref surface: 85
x_end_loc: 1.5
x_end_ref_surface: s5
y_start_loc: 2.0
y_start_ref_surface: s5
y_end_loc: 2.0
y_end_ref_surface: 55§
z_start loc: 0
z_start_ref surface: s5
z_end_loc: -.75
z_end_ref_surface: s5)

(i hole_d_ref jhole_ref]
detail_part: new_part
x_start_loc: 4.5
x_start_ref_surface: s6
x_end_loc: 4.5
x_end_ref_surface: s6
y_start_loc: 2.0
y_start_ref_surface: s6
y_end_loc: 2.0
y_end_ref_surface: s6
z_start loc: 0.0
z_start_ref surface: s6
z_end_loc: -.75
z_end_ref_surface: s5)

(i hole_e_ref |hole_ref]
detail_part: new_part
x_start_loc: 4.5
x_start_ref_surface: s7
x_end _loc: 4.5
x_end_ref_surface: 57
y_start_loc: .5
y_start_ref_surface: s7
y_end _loc: .5
y_end_ref surface: 57
z_start_loc: 0.0
z_start_ref surface: s7
z_end_loc: -.75
z_end_ref_surface: s5)

291

(i hole_f_yef |hole_ref]
detail_part: new_par
x_start_loc: .25
x_start_ref_surface: 57
x_end_loc: .75
x_end_ref_surface: s8
y_start_Joc: 1.25
y_start_ref surface: s8
y_end loc: 1.25
y_end_ref surface: s8
z_start_loc: 2.0
z_start_ref surface: s8
z_end_loc: 2.0
z_end_ref surface: s2)

(i s1 |surface|
detail_part: new_part
resident_plane: (x y)
x_bounding_plane_xy: ()
y_bounding_plane xy: (}
x_bounding_plane_xz: ()
z_bounding_plane_xz: ()
y_bounding_plane_yz: ()
z_bounding_plane_yz: ()
datum_plane: no
fillet_radius: .025
comner_radius: .020
type_of_surface: cast
surface_finish: .001
number_of_intersecting_holes: 0)

(i s2 |surface|
detail_part: new_part
resident_plane: (y z)
x_bounding_plane_xy: ()
y_bounding_plane xy: ()
x_bounding_plane xz: ()
z_bounding_plane xz: ()
y_bounding_plane yz: ()
z_bounding_plane_yz: ()
datum_plane: no
fillet_radius: .020
comner_radius: .018
type_of_surface: mach
surface_finish: .001
number_of_intersecting_holes: 1)

292

(i s3 |surface|
detail_part: new_part
resident_plane: (x y)
x_boundiug_plane_xy: ()
y_bounding_plane_xy: ()
x_bounding_plane xz: ()
z_bounding_plane xz: ()
y_bounding_plane_vz: ()
z_bounding_plane_y2: ()
datum_plane: no
fillet_radius: .020
corner_radius: .028
type_of_surface: mach
surface_finish: .001
number_of_intersecting_holes: 5)

(i s4 |surface]
detail_part: new_part
resident_plane: (y 2)
x_bounding_plane xy: ()
y_bounding_plane_xy: ()
x_bounding_plane xz: ()
z_bounding plane xz: ()
y_bounding_plane_yz: ()
z_bounding_plane_yz: ()
datum_plane: a
fillet_radius: .022
corner_radius: .020
type_of surface: mach
surface _finish: .001
number_of imersecting_holes: 0)

293

(i 85 |surface|
detail_part: new_part
resident_plane: (x y)
x_bounding_plane_xy: ()
y_bounding_plane_xy: ()
x_bounding_plane_xz: ()
z_bounding_plane_xz: ()
_bounding_plane_yz: ()
z_bounding_plane_yz: ()
datum_plane: ¢
fillet_radius: .018
corner_radius: .025
type_of surface: cast
surface_finish: .001
number_of_intersecting_holes: 0)

(i s6 |surface|
detail_part: new_part
resident_plane: (y z)
x_bounding_plane xy: ()
y_bounding_plane_xy: ()
x_bounding_plane_xz: ()
z_bounding_plane_xz: ()
y_bounding_plane_yz: ()
z_bounding_plane_yz: ()
datum_plane: no
fillet_vadius: .020
corner_radius: .030
type_of surface: mach
surface_finish: .001
number_of_intersecting_holes: 0)

294

(i 57 |surface|
detail_part: new_part
resident_plane: (x z)
x_bounding_plane xy: ()
y_bounding_plane xy: ()
x_bounding_plane xz: ()
z_bounding_plane xz: ()
y_bounding_plane_yz: ()
z_bounding_plane_yz: ()
datum_plane: b
fillet_radius: .018
corner_radius: .020
type_of_surface: mach
surface_finish: .001
number_of_intersecting_holes: 0)

(i 58 |surface|
detail_part: new_pan
resident_plane: (x z)
x_bounding_plane xy: ()
y_bounding_plane_xy: ()
x_bounding_plane xz: ()
z_bounding_plane_xz: ()
y_bounding_plane_yz: ()
z_bounding_plane_yz: ()
datum_plane: no
fillet_radius: .050
corner_radius: 0.030
type_of_surface: mach
surface_finish: .001
number_of_intersecting_holes: 0)

295

